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Abstract 

This document presents advanced spectral estimation techniques for multiple moving 

target feature extraction, spectral analysis of one-dimensional (1-D) gapped data sequences, 

and synthetic aperture radar (SAR) imaging with angle diversity data fusion. 

For the multiple moving target feature extraction problem, we study clutter suppression 

and feature extraction of multiple moving targets for airborne high range resolution (HRR) 

phased array radar. We show how to use a Vector Auto-Regressive (VAR) filtering tech- 

nique to suppress the correlated ground clutter and propose a relaxation-based parameter 

estimation algorithm for multiple moving target feature extraction. For the spectral analy- 

sis of gapped data sequences, we present an algorithm for nonparametric complex spectral 

estimation of gapped data via an adaptive filtering approach, referred to as the GAPES 

(Gapped-data Amplitude and Phase Estimation) algorithm, which iterates between step- 

s of estimating the adaptive filter and the corresponding spectrum via APES (Amplitude 

and Phase Estimation) and filling in the gaps via a least squares (LS) fitting. For the SAR 

imaging with angle diversity data fusion, we study both nonparametric and quasi-parametric 

methods. For the nonparametric method, we propose to use the GAPES algorithm to fill 

in the gaps in a range-wise mode and then use a two-dimensional (2-D) APES algorithm 

to obtain the final 2-D SAR image. For the quasi-parametric method, we first establish 

a flexible data model that describes each target scatterer as a 2-D complex sequence with 

arbitrary amplitude and constant phase in range and cross-range. Then we present an algo- 

rithm, referred to as QUALE (QUasi-parametric ALgorithm for target feature Extraction), 

for the SAR target feature extraction and imaging with angle diversity data fusion based on 

the flexible data model. Numerical results are presented to illustrate the performances of all 

algorithms proposed in the document. 



1.    Introduction 

This document presents advanced spectral estimation techniques for multiple moving 

target feature extraction, spectral analysis of one-dimensional (1-D) gapped data sequences, 

and synthetic aperture radar (SAR) imaging with angle diversity data fusion. 

For the multiple moving target feature extraction problem, we study clutter suppression 

and feature extraction of multiple moving targets for airborne high range resolution (HRR) 

phased array radar. We show how to use a Vector Auto-Regressive (VAR) filtering tech- 

nique to suppress the correlated ground clutter and propose a relaxation-based parameter 

estimation algorithm for multiple moving target feature extraction. For the spectral analy- 

sis of gapped data sequences, we present an algorithm for nonparametric complex spectral 

estimation of gapped data via an adaptive filtering approach, referred to as the GAPES 

(Gapped-data Amplitude and Phase Estimation) algorithm, which iterates between step- 

s of estimating the adaptive filter and the corresponding spectrum via APES (Amplitude 

and Phase Estimation) and filling in the gaps via a least squares (LS) fitting. For the SAR 

imaging with angle diversity data fusion, we study both nonparametric and quasi-parametric 

methods. For the nonparametric method, we propose to use the GAPES algorithm to fill 

in the gaps in a range-wise mode and then use a two-dimensional (2-D) APES algorithm 

to obtain the final 2-D SAR image. For the quasi-parametric method, we first establish 

a flexible data model that describes each target scatterer as a 2-D complex sequence with 

arbitrary amplitude and constant phase in range and cross-range. Then we present an algo- 

rithm, referred to as QUALE (QUasi-parametric ALgorithm for target feature Extraction), 

for the SAR target feature extraction and imaging with angle diversity data fusion based on 

the flexible data model. 

This document contains 5 chapters. In Chapter 2, we study the multiple moving target 

feature extraction for airborne HRR phased array radar. Chapter 3 presents a technique for 

nonparametric spectral analysis of gapped data sequences. In Chapters 4 and 5, we study 

the SAR imaging with angle diversity data fusion via nonparametric and quasi-parametric 

methods, respectively. 



In Chapter 2, we study the clutter suppression and feature extraction of multiple moving 

targets for HRR phased array radar. To avoid range migration problems that occur in the 

HRR radar data, we divide each HRR profile into non-overlapping low range resolution 

(LRR) segments, so that each LRR segment contains a sequence of HRR range bins. No 

information is lost due to the division and hence no loss of resolution occurs. We show 

how to use the VAR filtering technique to suppress the correlated ground clutter. Then 

a relaxation-based parameter estimation algorithm is presented for multiple moving target 

feature extraction. The problem of multiple target feature extraction is reduced to the feature 

extraction of a single target in a relaxation-based iteration step. In each iteration step and 

for each target, the target phase history sequence and Direction-Of-Arrival (DOA) (or the 

unknown array manifold) are estimated from some spatial signature vectors by minimizing 

a Weighted Least Squares (WLS) cost function. The complex amplitude and range of each 

target scatterer are then extracted from the estimated target phase history sequence by using 

RELAX, a target feature extraction algorithm with super resolution performance. 

In Chapter 3, We present the GAPES algorithm for nonparametric complex spectral 

estimation of gapped data. Unlike the fast Fourier transform (FFT), windowed or averaged 

FFT spectra, the APES spectrum has good resolution properties, suffers from little or no 

leakage effects, and has good statistical stability. The excellent performance of APES in 

this class of nonparametric spectral analysis methods is one of the reasons why we choose 

to extend this particular approach to the gapped-data case. The incomplete data sequence 

may contain gaps of various sizes. The GAPES algorithm iterates the following two steps: 

(1) estimating the adaptive FIR filter and the corresponding complex spectrum via APES, 

and (2) filling in the gaps via a LS fitting criterion. The initial condition for the iteration is 

obtained from the available data segments via APES. 

In Chapter 4, we investigate the SAR imaging with angle diversity data fusion via 

GAPES. The APES and GAPES algorithms are first introduced for the spectral estima- 

tions of complete and gapped data, respectively. For the angle diversity data fusion for SAR 

imaging, the radar measurements in range are complete whereas the gaps are caused by the 

intermittent measurement mode and thus only exist in the azimuth (cross-range) dimen- 



sion. We perform the 1-D windowed FFTs (WFFTs) in range, use the GAPES algorithm 

to interpolate the gaps in the aperture for each range, apply the 1-D inverse FFTs (IFFT- 

s) and de-window in range, and apply the two-dimensional (2-D) APES algorithm to the 

interpolated matrix to obtain the final 2-D SAR image. 

In Chapter 5, We first establish a flexible data model that describes each target scatterer 

as a 2-D complex sinusoid with arbitrary amplitude and constant phase in range and cross- 

range, and then present the QUALE algorithm for SAR target feature extraction and imaging 

via data fusion through angle diversity based on the established flexible data model. QUALE 

first estimates the model parameters that include, for each scatterer, a 2-D arbitrary real- 

valued amplitude sequence, a constant phase, and scatterer locations in range and cross- 

range. QUALE then averages the estimated 2-D real-valued amplitude sequence over range 

by making the assumption that the scatterer radar cross section (RCS) is approximately 

constant. QUALE next models the so-obtained 1-D sequence with a simple sine function 

by assuming that the scatterer is approximately a dihedral (a trihedral is approximated as 

a very short dihedral), and estimates the relevant sine function parameters by minimizing a 

nonlinear least squares (NLS) fitting function. Finally, the approximate 2-D SAR image is 

reconstructed by using the estimated features. 

Each of the aforementioned chapters is self-contained with its own introduction, for- 

mulation of the problem of interest, detailed presentation of approaches, conclusions, and 

references. We acknowledge Dr. Rob Williams of Air Force Research Laboratory for giving 

us the interesting research topic of SAR imaging with angle diversity data fusion. 



2.    Multiple Moving Target Feature Extraction for 

Airborne HRR Radar 

2.1    Introduction 

Clutter and jamming suppression is critical for airborne radar signal processing.   The 

ground clutter observed by an airborne radar is spread over two dimensions of both the range 

and spatial angle and the clutter spectrum also covers a certain Doppler region due to the 

platform motion. A Vector Auto-Regressive (VAR) filtering technique was recently proposed 

by Swindlehurst and Stoica [1] to suppress the clutter adaptively.  It is more robust than 

the non-adaptive Displaced-Phase-Center-Antenna (DPCA) processing since the latter is 

sensitive to both array calibration errors and system mismatch. The VAR filtering technique 

whitens the correlated clutter only temporally and can be computationally simpler than the 

conventional Space-Time Adaptive Processing (STAP) based techniques, which may require 

a significant amount of computations due to the need of using a bank of filters and the 

inversions of matrices of large dimensions. STAP cannot be used for jamming suppression 

if the secondary data bins used to obtain the second-order statistics of the ground clutter 

do not contain jamming interference.  Although the VAR filtering technique can be easily 

used for spatial whitening as well, it is not needed since the VAR-filtered interference is 

assumed to be spatially colored with an unknown and arbitrary covariance matrix, which 

automatically achieves jamming suppression when the VAR filter output is used with the 

Maximum Likelihood (ML) methods presented by Swindlehurst and Stoica [1] to estimate 

the target parameters for Low Range Resolution (LRR) wide-area surveillance radar. 

Future airborne radars will be required to provide increasingly High Range Resolution 

(HRR) features of ground targets, which makes the signal processing needed by airborne 

HRR phased array radars even more important. Compared to a conventional airborne LRR 

radar [2], an airborne HRR radar can not only enhance the radar's capability of detecting, 

locating, and tracking moving targets, but also can provide more features for applications 

including Automatic Target Recognition (ATR) [3, 4]. To avoid the range migration problems 



that occur in HRR radar data, we first divide the HRR range profiles into LRR segments. 

Since each LRR segment contains a sequence of HRR range bins, no information is lost 

due to the division and hence no loss of resolution occurs. We extend the VAR filtering 

technique and the unstructured ML method in [1] for clutter suppression and single target 

feature extraction for airborne HRR phased array radar. The target phase history sequence 

and Direction-Of-Arrival (DOA) (or the unknown array manifold) are estimated from some 

spatial signature vectors by minimizing a Weighted Least Squares (WLS) cost function, and 

the complex amplitude and range of each target scatterer are extracted from the estimated 

target phase history sequence by using RELAX [5]. 

We also extend the single target approaches to the case of multiple targets. The multi- 

ple moving target scenario occurs frequently in radar applications. Yet to the best of our 

knowledge, little research on the topic has been reported in the literature.  We present a 

relaxation-based algorithm for multiple moving target feature extraction. Each of the tar- 

gets is assumed to have a rigid-body and the scatterers of the same target have the same 

DOA. The relaxation-based algorithm is used to minimize a nonlinear least squares fitting 

function by letting only the parameters of one target vary at a time while fixing the para- 

meters of all other targets at their most recently determined values. Thus the problem of 

multiple target feature extraction is reduced to the feature extraction of a single target in a 

relaxation-based iteration step. We use numerical examples to demonstrate the performance 

of this algorithm for clutter suppression and multiple moving target feature extraction. 

The remainder of this paper is organized as follows. In Section 2, we establish the multiple 

moving target data model for airborne HRR phased array radar, which is followed by a brief 

discussion of the VAR filtering technique. In Section 3, we present the relaxation-based 

multiple moving target feature extraction method. Simulation results and their analysis are 

presented in Section 4. Finally, we give the conclusions in Section 5. 



2.2    Data Model and VAR Filtering 

The range resolution of a radar is determined by the transmitted signal bandwidth. To 

achieve high range resolution, a radar must transmit wide band pulses, which are often linear 

frequency modulated (LFM) chirp signals [6]. The range resolution of a LRR radar is much 

larger than the length of a target so that the target occupies only one LRR range bin, while 

the range resolution of a HRR radar is so small that each target occupies several HRR range 

bins. 

Consider an airborne HRR radar having a one-dimensional (1-D) antenna array with M 

elements uniformly spaced along the flight path of an airborne platform. A cluster of N chirp 

pulses is transmitted during a coherent processing interval (CPI). After dechirping, sampling, 

and Fourier transforming the signals in each element of the array, we obtain the HRR range 

profiles. Without clutter and jamming suppression, these clutter and jamming dominated 

profiles are not useful for any applications. To avoid range migration problems, we divide 

each HRR profile into non-overlapping LRR segments so that each LRR segment contains L 

HRR range bins, as shown in Figure 2.1. We choose L to be much larger than the maximum 

number of range bins over which all targets can possibly expand and migrate during the 

CPI. We then apply inverse Fourier transform to each segment. For the segment of interest, 

where targets may be present, the inverse Fourier transform yields the primary data. We 

assume that D targets are present in the primary data with the dth target consisting of Kd 

scatterers. We assume that the scatterers of each target have the same Doppler frequency 

and the same DOA, but different complex amplitudes and range frequencies. Then the 

primary data model can be written as (see Appendix A for the model derivation): 

D   (Kd = v r *< W   =   £    £ a*^'   e^V'^a^) + e,(n), 
d=l  \fc=l / 

l = 0,---,L-l,    n = 0,---,iV-l, (2.1) 

where Xj(n) is the array output vector of the Zth phase history sample due to the nth pulse; 

a(0d) is the array manifold and is a function of the dth target DOA 6d relative to the flight 

path; e((n) is the interference including the temporally and spatially correlated Gaussian 



ground clutter, both temporally and spatially white Gaussian noise, and possibly a jammer 

that is temporally white but a point source in space. We assume that the clutter, noise, 

and jamming in different HRR range bins are independent and identically distributed. The 

complex amplitude adk and the frequency fdk are, respectively, proportional to the RCS and 

range of the kth scatterer of the dth target. The vd and u>d are, respectively, the scaled radial 

velocity and the normalized Doppler frequency of the dth target. Range migration can occur 

due to the radial motion between the radar and target and the high range resolution of the 

HRR radar. For notational convenience, let 

ujdl = ud(l + rl),    l = 0,---,L-l,    d=l,---,D, (2.2) 

where r = vdfiod is a known constant independent of the target motion (see Appendix A) 

and is usually very small (<C 0.01). Then (2.1) can be written as 

D 

x,(n) = ]T&dZe^<nad + e,(n),    l = 0,---,L-l,    n = 0,---,N - 1, (2.3) 
d=l 

where we drop the dependence of a.d on 6d for notational brevity and b^ = Y,k=i cxdk^2ir^dkl- 

Note that, when L = 1, the model in (2.3) reduces to the data model for the LRR case. 

For L > 1, we have a phase history sequence for each LRR segment and no loss of range 

resolution occurs because of no information loss. 

The secondary data are obtained from segments adjacent to the segment of interest in 

the same way as the primary data are obtained from the segment of interest (see Figure 2.1. 

The secondary data are assumed to be target free (see [7] for the latest research results on 

the selection of secondary data) and are modeled as a VAR random process [1]. The VAR 

filter has the form: 

H(Z-1)=I + J:HPZ-», (2.4) 
P=I 

where P is the VAR filter order, z~l denotes the unit delay operator, and I is the identity 

matrix. 

Next, we outline the estimation of the VAR filter 7i(z-1) using the target-free secondary 

data. Let esj(n), s = 1, • • •, S, 1 = 0, • • •, L — 1, n = 0, • • •, N — 1, denote the secondary 



data, where 5 denotes the number of secondary data segments. From 

L-\ s N-\ 
H1,---,HP = arg   miiii   EEE 

with ||-|| denoting the Euclidean norm, we get 

esi{n) + ]THpesi(n - p) 
P=I 

(2.5) 

where 

H = E*H (**H)     , 

# = [^10   •••   *SJ   •••   *S(L-1)], 

E = [Eio ••• Esj ••• ~Es{L-i)], 

^sl(n) = -[el(n-l)---el(n-P)]T, 

(2.6) 

and 

E., = [e,«(P) ••• e^N-l)],    J = 0,---,L-1,    s = l,---,S, 

with (-)T and (-)H denoting the transpose and conjugate transpose, respectively. 

Once the VAR filter coefficients are determined, we use the filter to suppress the clutter 

in the primary data. The VAR filter output for the primary data has the form 

y,(n)   =   7*(Oxi(n) 
D 

=   EWd^e^ + e^), 

Z = 0, •••,£,-!,    n = P,---,N-l, (2.7) 

where T-^-1) has the same form as H{z~l) in (2.4) except that the {Hp}^=1 in (2.4) are 

replaced by {Hp}p=1, 

P=I 

(2.8) 

and 

e,(n)   =   Uiz'^eiin),    Z = 0,---,L-1,    n = P, • • -,N - 1. (2.9) 



Let 

ctdi = bdliidlBu,    l = Q,---,L-l,    d=l,---,D, (2.10) 

be referred to as the spatial signature vector of the dth target for the Zth phase history sample. 

Then (2.7) can be rewritten as 

y<K) = Eö^<n + e;(n),    Z = 0,---,L-1,    n = P, ■ ■ -,N - 1. (2.11) 
d=l 

Our problem of interest is to estimate {u>d, 6d, {(ydk, fdk}k=\}d=i ^ tne array manifold 

{a(9d)}f=1 is known or {ud, ad, {adk, fdk}k=x}%=1 if the array manifold {a{9d)}$=1 is un- 

known from the VAR filter output y;(n), I = 0, • • •, L-l, n — P,---, N-l, by minimizing 

Nonlinear Least Squares (NLS) criteria using a relaxation-based optimization algorithm. 

2.3    Feature Extraction of Multiple Moving Targets 

Our feature extraction algorithm consists of the following two separate steps: 

Step I: Estimate the target space-time parameters {ud, 0d, {bdi}^}^ if the array mani- 

fold {a(0d)}dLi is known or {u>d, ad, {bdi}fSQ}d=1 if the array manifold is unknown from the 

VAR filter output {yi(n)},    Z = 0,---,L-1,    n = P,- • •,TV- 1. 

Step II: Estimate the target range parameters {adk, fdk}k=i, d= 1, • • •,£>, from the esti- 

mate {bdi}f~Q of {&di}£r0
: obtained in Step I. 

2.3.1    Space-Time Parameter Estimation 

The   NLS   estimates   of   the   space-time   parameters   {u)d,    9d,    {bdi}u=o^}d=i    or 

{(vd, ad) {bdi}i^o}d=i can be obtained by minimizing the following NLS criterion: 

L-\ 

1=0 

D 

yt(n)-Y,ädiej"d'n 

d=l 

(2.12) 

The minimization of the cost function C\ in (2.12) is a highly nonlinear complicated opti- 

mization problem. Here we present an alternating or relaxation-based optimization approach, 

which is a conceptually and computationally simple method for multiple moving target fea- 

ture extraction. The relaxation-based algorithm is used to minimize C\ by letting only the 



parameters of one target vary at a time while fixing the parameters of all other targets at 

their most recently determined values. Therefore, the feature extraction of multiple moving 

targets is reduced to the feature extraction of a single moving target in a relaxation-based 

iteration step. We first consider the space-time parameter estimation of the dth target and 

then give detailed steps of our approach for multiple targets. 

Space-Time Parameter Estimation of the dth Target 

Let 

D 

ydi(n)=yi(n)-   J2   MW^n,    l = 0,---,L-l,    n = P,---,N-l,        (2.13) 
i=l,ijtd 

where {u)i, ä,, {bu}f=o}iLd, i^d *s assumed available. Note that if the array manifold is 

known, äj is replaced by a(0;), with {Qi}?=\, i±d assumed available. Hence y<fl(rc) can be 

written as 

y«ö(n) = ädle
J'w««B + e<ö(n)>    / = 0,---,L-l,    n = P,-■ ■ ,N-1, (2.14) 

where edi(n) denotes the interference due to clutter, noise, and contributions from other 

targets. We assume that {«^(n)} is a zero-mean temporally white Gaussian random process 

with an unknown arbitrary spatial covariance matrix Q<j. Then the negative log-likelihood 

function of ydi(n) hi (2.14), is proportional to 

C2 = ln|Qd|+Tr(Q^Cd), (2.15) 

where | • | and Tr(-) denote, respectively, the determinant and the trace of a matrix and 

c* = iEEM«)-ö/di"][y4«)-^i^f 
ML i-0 n=P 

1   L~l 

J2 [Ydi - Scaßi] [YÄ - ötdlß»]H , (2.16) 

with 

NLl=0 

Ydi   =   [ydi(P) ■■■ ydi(N-l)},    l = 0,---,L-l, (2.17) 

10 



and 

ßäi [< JwdlP Jwd,(N-l) 1# J   ,    Z = 0,---,L-1. (2.18) 

Minimizing C2 in (2.15) with respect to Qd results in Q<* = Cd. The cost function in (2.15) 

with Qd replaced by Q<f becomes: 

C3   = In |Cd| 

In 
-,    L-\ 

E NL 1=0 

Nlädt 
Ydlß dl 

N 
<*<ü 

Ydlß H 
dl 

N 
+ YdiY% - 

H     Ydlßdlß»Y% 

N 

(2.19) 

The minimization of C3 in (2.19) with respect to ota gives 

1 
a<u = -~-Ydißdi ,    l = 0,---,L-l. (2.20) 

The estimate of the Doppler frequency ud of the <2th target is obtained by minimizing the 

concentrated cost function, 

In 
1    L-l 

NLtoi 
v -vH     Ydiß^ßdjY 
Y<u*di  

dl 

N 
(2.21) 

which requires a 1-D search. Note that the spatial signature estimate in (2.20) can be 

interpreted as the temporal average of the Doppler shift and range migration compensated 

VAR filtered spatial measurements. 

The estimate Qd of the covariance matrix Qd of the VAR filtered interference sequence 

can be written as 

Q* = Jl E [Yd*Y£ - Nix^]. (2.22) 

Given {adl}f~J and Qd, the estimates of {bdi}^ and DOA 6d (if the array manifold is 

known) or ad (if the array manifold is unknown) can be obtained by minimizing the following 

Weighted Least Squares (WLS) cost function, 

C* = E {&di - bdi-Hdiaa)    Qä1 (öÄ - baU^ . (2.23) 
1=0 
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Note that this cost function is similar to the one used for the unstructured method in [1] 

since the Fisher information matrix (FIM) for ädi in (2.14) is also proportional to Q^1 (see 

[1] for more details). 

Method 1: To estimate 6d, we must know the array manifold a(0d) as a function of Q4. The 

method for estimating {bdi}^ and Od by using the array manifold is referred to as Method 

1. Without loss of generality, we consider a uniform linear array (ULA), where a(#d) has the 

form, 

a(0d) = I   ej^cosed   ...   ej(M-i)^cosed (2.24) 

with A being the radar wavelength and £ being the spacing between two adjacent sensors. 

Minimizing C5 in (2.23) gives 

bdi   = Z = 0,---,L-1, (2.25) 

and 

ed 
L-l 

=   arg max ^jT 
aZ'k" Q7l &di 

.H - (2.26) 
e* 1=0 a^Q^Uaa«, 

Once 6d is determined, {bdt}f=Q is obtained with (2.25) by replacing a^ with a((?d). 

Method 2: To achieve robustness against array calibration errors, we can assume that a^ 

is completely unknown. The corresponding method used to estimate both {bdi)[=Q and a^ is 

referred to as Method 2. Note that since replacing {bdi}^ by {pbdi}1^ and a^ by &d/ß in 

(2.23), where ß is any non-zero complex scalar, does not change C5, {bdi}f=Q and a<* can only 

be determined up to an unknown multiplicative complex constant. This unknown complex 

scalar, similar to the unknown gain and initial phase of a radar system, does not affect most 

practical applications such as ATR. C5 (see below). 

Given {bdi}^, minimizing C5 in (2.23) with respect to ad yields 

-1 

ad = 
s.H. 

E\bäi\2n:Adliidl 
U=0 1=0 

(2.27) 
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where (•)* denotes the complex conjugate.   Given a,*, {bdi}fZo  can be estimated by using 

(2.25). Hence we can cyclically iterate (2.25) and (2.27) to obtain the estimates of {bdi}f=o 

and aj. 

To start the iteration, we must have an initial estimate of either a^ or {bdi}^- Our 

initialization approach is obtained by using the Singular Value Decomposition (SVD) [8]. 

Rewriting C5 in (2.23), we have 

L-l 

Ce = 53 iHdi <*<u - bdia.d)    Qdi iH-di <*di - bdiB.dj , 

where 
.HA 

Qdi = n^Qd^di,   l = 0,-'-,L-l. 

(2.28) 

(2.29) 

To place the most weight on the term that is associated with the largest signal energy, 

we choose W^ = Q<«0, where IQ is selected such that 
L-\ 

Let 

/^-dlQ
adlo 

{ na ädi }^o 

A-.-1 
öcdi = Wj^ ocdi, 

is the largest among 

(2.30) 

and 

äd = Wjad. (2.31) 

We minimize the following approximate cost function 

L-l 

C7 =^2 (&<u ~ bdi&d)    (ädi - bdiB-d), 
1=0 

which is equivalent to 

C8 = Ad-ädbJ 
\\r 

where || • \\p denotes the Probenius norm, 

(2.32) 

(2.33) 

bd   =   [6, 'rfo    • • • bd(L-i)] , (2.34) 

and 

Äd   =    [äd0    •••    äd(L-i)] 

13 

(2.35) 



The Cs in (2.33) is minimized if 

ädbJ = U(11<7dlv£, (2.36) 

where u^i and vdl are, respectively, the left and right singular vectors associated with the 

largest singular value o<n of A^. Then either the initial estimate of bd, i.e., 

bf   =   vdl, (2.37) 

or the initial estimate of a^, i.e., 

a<0)   =   Wd-"udl, (2.38) 

can be used to initialize the alternating optimization approach. We use the one in (2.37) in 

our numerical examples. The steps of Method 2 are summarized as follows: 

Step (0): Obtain the initial estimate bd' of hd with (2.37). 

Step (1):  Update {bdi}^ with (2.25) by replacing ad in (2.25) with the most recently 

determined a^. 

Step (2):  Update ad with (2.27) by replacing {bdi}f=o   in (2.27) with the most recently 

determined {bdi)[=Q- 

Step (3): Iterate Steps (1) and (2) until practical convergence, which is determined by 

checking the relative change £ of the cost function C5 in (2.23) between two consecutive 

iterations. 

We remark that if the range migration is negligible, i.e., r = 0 in (2.2), then {"Hdi}^ 

in (2.8) do not depend on I. Then Step (0) alone gives the solution that minimizes the C5 

in (2.23). 

Summary of the Steps of Space-Time Parameter Estimation 

The space-time parameter estimates {6)4, §d (or ad), hd}d=i of the multiple moving tar- 

gets can be obtained as follows: 

Step 1.1: Assume D = 1. Obtain {u)d, &d (or ad), bd}d=i from yj(n). 

Step 1.2: Assume D = 2.  Compute y2i(") with (2.13) using {a>d, 9d (or ad), hd}d=\ ob- 

tained in Step 1.1. Obtain {tod, 9d (or ad), bd}d=2 from y2i(™)- Next, compute yu(n) with 

14 



(2.13) using {ud, 9d (or ad), b,*}^ and then re-determine {ud, 6d (or ad), bd}d=:1 from 

yu{n). Iterate the previous two substeps until "practical convergence" is achieved (to be 

discussed later on). 

Step 1.3: Assume D = 3. Compute y3/(n) with (2.13) using {Cbd, 9d (or ad), bd}d=ii2 ob- 

tained in Step 1.2. Obtain {u)d, 9d (or ad), bd}d=3 from y3;(™)- Next, compute yu(n) with 

(2.13) using {ud, 6d (or ad), bd}d=2,3 and then re-determine {üd, 6d (or ad), bd}d=1 from 

yu(n). Then, compute y2;(
n) witn (2.13) using {a)d, 0d (or ad), bd}d=ii3 and re-determine 

{&d, @d (or ad), bd}d=2 from y2i{n). Iterate the above three substeps until "practical con- 

vergence" is reached. 

Remain Steps: Continue similarly until D is equal to the desired or estimated number of 

targets, which is assumed to be known or can be determined by using the Generalized Akaike 

Information Criterion (GAIC) [5, 9]. d = 1, • • •, D. 

The "practical convergence" in the iterations of the above algorithm can be determined 

by checking the relative change e of the cost function C\ in (2.12) between two consecutive 

iterations. The steps leading to the last step are needed to provide good initial conditions 

for the last step of the algorithm. 

Estimating the target range features {ctdk,}dk)k=\ fr°m bd, d = 1,-• • ,D, is our next 

concern. 

2.3.2    Target Range Feature Estimation 

Once the sequences {b^}^, d = 1, • • •, D, for all targets are available, the range feature 

estimates, {&dk, fdk}k=i, d = 1>*"*>A can be obtained by minimizing the following cost 

function, 

C9({adk, fdk}^) = \\bd - Fdad\\2,    d = 1, • • •, D, (2.39) 

where b^ is the Ith. element of vector b<f, 

«d = [oidi    • • •    QdKd]   , d = l,---,D, 
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and 

Fd = [Ui    •••    fdKd),d=l,---,D, 

with 

f* = [l   ^fdk • • • ^fik{L-l)f ,d=l,---,D,k = l,---,Kd. 

The estimates {&dk, fdk}k=i of iadk, fdk}k=i can be obtained by using the RELAX algorithm 

(see [5] for more details), which has a similar structure as the approach used for space-time 

parameter estimation. 

We remark that our multiple moving target feature extraction algorithm above may have 

used more unknowns than necessary at certain steps. We choose to do so to simplify and 

speed up the algorithm. For example, to use the relaxation-based optimization algorithm, we 

could estimate both the space-time and the range parameters of the dth. target and subtract 

out the dth target based on the parameter estimates {wd, h (or a^), {&dk, fdk}k=i}d=i for 

the iteration steps. However, since estimating the range parameters {adk, fdk}k=i can be 

computationally demanding, we choose to separate the range parameter estimation from 

the space-time parameter estimation. Our numerical results have shown little accuracy 

degradation but reduced computations, especially for large Kd, as a result of the separate 

space-time and range parameter estimation. 

2.4    Numerical Examples 

We present several numerical examples to illustrate the performance of our proposed 

algorithm. In the following examples, we assume that the array is a ULA with M = 8; the 

interelement distance between two antennas is £ = A/2; the number of pulses in a CPI is 

N = 16; the phase history sample number is L = 16, i.e., an LRR range segment contains 

16 HRR range bins. Consider two targets (D = 2) with DOAs 0t = 30° and 02 = 150°, 

and Doppler frequencies wx = 0.27T and w2 = OAn with r = 0.01. Each of the two targets 

consists of two closely spaced scatterers (Kx = K2 = 2) with parameters an = 1, «12 = 1, 

«2i = 1, «22 = 1, /11 = 0.1, /12 = 0.1 + 1/2L, /21 = 0.3, and /22 = 0.3 + 1/2L, where the 

subscript ij means the jth scatterer of the ith target. The VAR filter order is P = 2. (No 

16 



obvious performance improvement is obtained by higher orders.) The number of secondary- 

range bins is S = 4. We set e = £ = 10~3 to determine the "practical convergence" in the 

simulations. The mean-squared errors (MSEs) of the various estimates are obtained from 

100 Monte Carlo trials. 

We simulate the ground clutter as a temporally and spatially correlated Gaussian random 

process [10]. The Clutter-to-Noise Ratio (CNR), defined as the ratio of the clutter variance 

to the noise variance, is set to be CNR= 40 dB. A jamming signal, which is a zero-mean 

temporally white Gaussian random process, also exists. The Jammer-to-Noise Ratio (JNR), 

which is the ratio of the jammer's temporal variance to the noise variance, is chosen as 

JNR= 25 dB and the jamming impinges from 6j = 120°. When array calibration errors exist, 

the errors for different elements are assumed to be independent and identically distributed 

complex Gaussian random variables. In our simulations, a complex Gaussian random vector 

with zero-mean and covariance matrix 0.041 is added to the array manifold to simulate array 

calibration errors, which implies that the variance of the calibration error for each element 

is 0.04. 

We first present an example of no array calibration errors. Note that the complex am- 

plitude estimates {&dk}*=i of {adk)k=i obtained via Method 2 are all scaled by a common 

unknown complex scalar. To calculate their best possible MSEs, we scale them to minimize 

Cxo = Wet* - ßcxd\\2, (2.40) 

where ad0 is the true value of ad. Minimizing (2.40) with respect to ß yields: 

ofodo (2 41) 

Note that this scaling scheme is only used to illustrate the complex amplitude estimate 

performance; it is not a necessary step in a practical application including ATR since only 

the relative amplitudes are of interest. For comparison purposes, the MSEs of the estimates 

{&dk}k=i obtained via Method 1 are presented both with and without a scaling scheme 

similar to (2.40). 
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Figures 2.2(a)-2.2(d) show the MSEs of the estimates of the Doppler frequency, target 

DOA, complex amplitude, and range frequency of the first scatterer of the first target as 

a function of Signal-to-Noise Ratio (SNR), which is defined as the ratio of |an|2 to the 

noise variance, and compare them with the corresponding Cramer-Rao bounds (CRBs) (see 

Appendix B for the CRB derivation). (The results for the other scatterer and the other 

target are similar.) Due to using the scaling scheme in (2.40), the MSEs of {a*}^ may be 

better than the CRBs (which do not account for such a scaling). We note that as the SNR 

increases, the MSEs can approach the corresponding CRBs, which indicates that the clutter 

suppression scheme works well and the parameter estimation algorithm is highly accurate. 

Next, we present an example when the array calibration errors exist. All other parameters 

are kept the same as for Figure 2.2. Figures 2.3(a)-2.3(d) show the MSEs of the estimates 

of the Doppler frequency, target DOA, complex amplitude, and range frequency of the first 

scatterer of the first target, as a function of SNR. Note that the MSEs of the complex 

amplitude and range frequency estimates obtained via Method 2 are close to the CRBs as 

the SNR increases, while the MSEs of the complex amplitude estimates for Method 1 fail to 

follow the CRBs if the scaling scheme is not used, though the range frequency is still well 

estimated via Method 1. Hence from Figure 2.3, we note that both Methods 1 and 2 are 

robust against calibration errors as far as the Doppler frequency, relative complex amplitude, 

and range frequency of the scatterer are concerned. 

rigid-body moving co2 = OAn, DOAs, and {&*, 6k, Uk}k=\,2 primary data 

We remark that the above simulation results show that Methods 1 and 2 provide similar 

performances for target relative complex amplitude and range frequency estimation. Method 

2 avoids the 1-D search over the DOA space and usually requires only a few (3 ~ 6) iterations. 

To estimate the target phase history sequence {ftu}^1 from the spatial signature estimates 

{au}f~o, Method 2 needs only about 10% ~ 30% of the amount of computations measured 

in MATLAB flops required by Method 1. (This difference is mainly due to the fact that the 

latter requires a 1-D search over the DOA space.) Hence if the array calibration errors are 

known to be significant enough to result in a useless target DOA estimate or if the target 

DOA is not of interest, Method 2 is preferred over Method 1. 
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2.5    Conclusions 

We have presented a robust and accurate method for the clutter suppression and feature 

extraction of multiple moving targets for airborne HRR phased array radar. To avoid the 

range migration problems that occur in HRR radar data, we divided the HRR range profiles 

into LRR segments. We have shown how to use the VAR filtering technique to suppress the 

ground clutter and use the relaxation-based algorithm to extract the features of multiple 

moving targets. The multiple moving target feature extraction problem is reduced to the 

feature extractions of a single moving target in a relaxation-based iteration step. For each 

target and in each iteration, the target phase history sequence and DOA (or the unknown 

array manifold) are estimated from the spatial signature vectors by minimizing a Weighted 

Least Squares (WLS) cost function. Numerical results have demonstrated that our multiple 

moving target feature extraction algorithm performs well in the presence of strong interfer- 

ence including clutter, noise, and jammer and is robust against array calibration errors. 

Appendix A: Data Model Derivation 

We sketch below the derivation of the data model used in (2.3). We first establish the 

data model for the case of a single antenna, then extend it to the case of the phased array 

radar. 

Assume that the radar transmits a group of chirp pulses with the pulse width T0 and the 

pulse repetition interval (PRI) T. A normalized chirp signal has the form 

s(t) = e-faht+T*),     \t\ < TQ/2, (2.42) 

where /o denotes the carrier frequency and 27 denotes the frequency modulation rate. First, 

we assume that there are D targets with different DOAs, radial velocities, and RCSs. At 

time t, the range of the dth target is Rd{t) = Rd + vjt, d = 1, • • •, D, where Rd and Vd 

denote the range location and radial velocity of the dth target, respectively, when the first 

pulse was transmitted. 
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Let i = t — riT denote the fast time, where n is the pulse number.  Then the received 

signal from the dth target is: 

2Vdt\ 
Td(t)   =   5dexpw 2TT/0 (; t-T0- Ard - W-»-*,-2-¥))}> 

1*1 < To/2,    n = 0,l,---,JV-l, (2.43) 

where &d is determined by the RCS of the dth target, r0 = 2RQ/C, Ard = 2(Rd - RQ)/C with 

Ro denoting a reference range (possibly corresponding to the center of the target), c is the 

speed of light, and N is the total number of pulses transmitted in a CPI. By using s(i— r0), 

with 11 — T0 | < T0/2, as the reference signal, the dechirped signal has the form: 

xd(t,n)   =   rd(t)s*(t-T0) 

a^exp 

•exp 
( 

J7 [2t-2r0-ATd 
2Vdt\ 

c  j(ATd + —)\- 
2Vdt\] 

(2.44) 

Since Vd/c and Ard tend to be very small in practice, when the dwell time, (TV — 1)T, is 

short, we can approximately express (2.44) as: 

xd(i,n) adexp 

exp 

. (AnVd     4-yr0Vd 3{—+—r- + 27ATd) t] exp \-j (-J- - -^\ vTn 

,D,    n = 0,l,---,N-l, (2.45) 

where A denotes the radar wavelength, and ad is äd scaled by a constant phase. Note that, 

in (2.45) above, the first exponential term, a linear function of i, corresponds to the phase 

change of the signal due to the dth. target within a chirp pulse, which is caused by the relative 

range and target velocity; the second one accounts for the phase shift (Doppler shift) between 

pulses, which is due to the radial velocity of the dth target; finally, the last term represents 

the accumulated phase shift from profile to profile, i.e., range migration. 

We assume that 2 (Rmax — Rmin) /c <C T0, where -Rmax and Ämjn denote the maximum 

and minimum ranges between the radar and target scatterers, respectively. Let Ts denote 
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the sampling period. Then we can express the sampled dechirped signal as 

D 
iilnl^a/^V'^'e«",    n = 0, ••-,#-1,    / = 0, • •-,L - 1, (2.46) 

d=l 

where L denotes the number of data samples due to each pulse, 

, (2K     272M + 2Ar.\T>i (2.47) 
\   A 7TC 7T     / 

ud = 2*VdT (^ - f) , (2-48) 

and 

vd = -il^Zk. (2.49) 
c 

Since both uj and ud depend on the relative speed between the radar and the target, if cod 

is known, so is vd, and vice versa. Defining vd = rud, we have: 

vd lTs .       . 
r = — = — , (2.50) 

Wd      TT/O - 7^0 

which is independent of the target velocity. 

For an HRR phased array radar with the array manifold a(0d), (2.46) becomes 

*(n) = E (ade>'^Vw<''Vw«'n) a(0d),    n = 0,- • -,iV - 1,    Z = 0,---,L-1.       (2.51) 
d=l 

Here, we assume D rigid-body targets with Kd scatterers for the dth target. We also assume 

that the scatterers of the same target have the same DOA. Straightforwardly, (2.51) has the 

form 

*(«) = E (E ^k^vfdkl ] e^e^aCfc),    n = 0, • • •, TV - 1,    I = 0, • • •, L - 1, (2.52) 
d=i \jb=i / 

where {adk, fdk, vd, ud} are the parameters of the kth scatterer of the dth target. Finally, 

when the interference is included, we obtain the data model in (2.1). 

Appendix B: Derivation of the CRBs 

The CRB matrix corresponding to the data model in (2.1) is derived for the general case 

in which the interference term e;(n) includes clutter, jamming, and noise. 
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Rewrite (2.1) as, 

D    (Kd 

T.r X   =   E   E«^   »wJo^^ + eeC™ (2.53) 
d=i \fc=i            / 

where <8> and © denote the Kronecker and Hadamard matrix products, respectively, 

us
dk = [l    ej2^k ■ ■ ■ e>2*f<klL-V]T , (2.54) 

wj= [l    ejw« ••• eJ'w-(JV-1>]rj (2.55) 

«5 = [fj(0) fj(l) •••fJ(L-l)f, (2.56) 

and 

with 

fd(Z) = [l eJ"w"r' • • • e,"w"r'(JV-1)]T,    J = 0, • • •, L - 1. (2.57) 

Let QJV, Qc, and Qj be, respectively, the covariance matrices of the noise, ground clutter, 

and jamming, which are independent of each other. Then 

Q = E{eeH} = QN + Qc + Qj, (2.58) 

where 

QN = O
2

NIMNL, (2.59) 

Qc = OCIL ® Qc (2.60) 

and 

Qj = o2jlNL®(aj*j), (2.61) 

with ajf, OQ, and o] being, respectively, the variances of the noise, clutter, and jamming, 

Ix, being the identity matrix of dimension L, Qc being as given in [10], and a.j denoting the 

jammer steering vector which has the same form as a(9d) in (2.24) except that 9d in (2.24) 

is replaced by the jammer DOA 6j. 
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According to the extended Slepian-Bangs' formula, the z;th element of the Fisher infor- 

mation matrix (FIM) has the form [11,12] 

{FM}0 = TY(Q-gQ-'g)+2Ra 
ßm)    Q ' \Sli, 

where 

77 = 

(2.62) 

(2.63) ReT(a) ImT(a) fT u 0 

with a, f, u>, and 0 being the vectors consisting of the complex amplitudes, range frequencies, 

Doppler frequencies, and DOAs of the targets, respectively; {ß$ denotes the derivative of x 

with respect to the zth parameter of 77; Re(z) is the real part of a; and Im(x) is the imaginary 

part of x. Note that the FIM is block diagonal since the parameters in Q are independent 

of those in /x and vice versa. Hence, the CRB matrix for the target features and the motion 

parameters can be calculated from the second term on the right side of (2.62). Let 

gSt = [("4 0 wj) 0 wj] 0 a* 

and 

Let 

Sdk — 3Zdk 

Ed = J27T 

where dL = [0 1 ■ • • L- 1]T. Let 

j 53 adkdL © u}sdk j 0 u>fd   0 ivr
d 0ad, 

(2.64) 

(2.65) 

(2.66) 

g? = J [Ea*w5fc)®wi   ©K (uL + rdL) 0 djv] © wd > 0 ad, (2.67) 

and 

Sd = Cd [(w$* ® wj) © "$] 0 (dM O ad), (2.68) 

where uL = [1    • • •    1]T € CLxl and Cd = -J(TT
2
/180) sin(0d7r/18O) with 6d being measured 

in degrees. Let 

G = f GQr   GQi   Gf   Gw   Ge 1 , (2-69) 
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where 

and 

G,= 

gll                  6IK1                  gjDl ' " '    &DKD 

GQ< = j GQr, 

gll      " "     gltfi      " " '     g£>l '""   EDKD 

Gw = g?   •••   g£ J 

Ge = g?   •••   ZD 

Then the CRB matrix for the parameter vector rj is given by 

CRB(T7) = ^ReCG^Q^G)]"1. (2.70) 
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Figure 2.2: Comparison of MSEs with CRBs as a function of SNR for (a) Doppler frequency, 

(b) DOA, (c) amplitude, and (d) range frequency of the first scatterer of the first target with 

CNR= 40 dB, JNR= 25 dB, and no array calibration error. 
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(b) DOA, (c) amplitude, and (d) range frequency of the first scatterer of the first target with 

CNR= 40 dB, JNR= 25 dB, and array calibration error (covariance matrix = 0.041) . 

27 



3.    Nonparametric Spectral Analysis of Gapped Data 

via an Adaptive Filtering Approach 

3.1    Introduction 

Spectral analysis of incomplete data is needed in many applications including astrono- 

my, underwater acoustics, radar, and communications. Conventional fast Fourier transform 

(FFT)-based approaches have been widely used for spectral analysis tasks due to their high 

computational efficiency. However, they suffer from low resolution and poor accuracy. Many 

other spectral analysis methods [1, 2, 3] with enhanced performance have been proposed 

for spectral analysis of data sequences. These methods include parametric (e.g. [4]), non- 

parametric (e.g. [5, 6, 7]), and semi-parametric (e.g. [8]) approaches. In general, the 

nonparametric approaches are less sensitive to data modeling errors than their parametric 

counterparts. Most, if not all of the cited methods, however, are devised for sequences of 

contiguous measurements without any missing data samples or gaps. 

The gapped (or missing) data problem usually arises when contiguous data measurements 

for a long time are hard to obtain or the measurements during some intervals are not useful 

due to strong interference or jamming and must be discarded. For instance, in astronomy 

data measurements are available only in the form of groups of samples separated by rather 

long intervals for which no reliable measurements can be taken (see, e.g., [9,10,11,12] and the 

references therein). In astronomical applications, special attention has been paid to detecting 

the presence of one or more periodic signals from incomplete data measurements by using 

techniques such as the periodogram [13], discrete Fourier transform (DFT) interpolation [14], 

the CLEAN deconvolution [11], and reconstruction of evenly sampled data by making certain 

assumptions on the data sequence. In radar signal processing, azimuth angle diversity data 

fusion (see, e.g., [15]) and data measurements in several discontinuous frequency bands also 

require spectral estimation for gapped or incomplete data sequences. 

In this paper, we present an algorithm for nonparametric complex spectral analysis of 

gapped data via an adaptive FIR filtering approach, referred to as the Gapped-data Ampli- 
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tude and Phase Estimation (GAPES) algorithm. The incomplete data sequence may contain 

gaps of various sizes. The GAPES algorithm iterates the following two steps: (1) estimat- 

ing the adaptive FIR filter and the corresponding complex spectrum via APES (Amplitude 

and Phase Estimation) [5, 6, 7], a nonparametric adaptive FIR filtering spectral estimation 

approach, and (2) filling in the gaps via an APES least squares fitting criterion. The initial 

condition for the iteration is obtained from the available data segments via APES. 

The remainder of this paper is organized as follows. In Section 2, we formulate the 

problem of interest. The GAPES algorithm for complex spectral analysis of gapped data is 

described in detail in Section 3. In Section 4, numerical examples are presented to illustrate 

the performance of the proposed algorithm. Finally, Section 5 contains our conclusions. 

3.2    Problem Formulation 

We consider the complex spectral analysis of one-dimensional discrete-time evenly sam- 

pled data sequences with gaps of various sizes. Let {x(n)}n=o denote a data sequence 

without gaps or missing data, where N denotes the data length. The spectral analysis of 

{x(n)} essentially amounts to decomposing x(n), at each frequency u of interest as: 

x{n) = a(u)e>'M + eu(n),        n = 0,- • •, N - 1,    we[0,27r), (3.1) 

where e^n) denotes the unmodeled noise and interference at frequency u, and a(u) is the 

value of the complex spectrum of {x(n)} at u. Note that in some applications only the 

amplitude (or power) spectrum |a(u;)| is of interest, whereas in others the phase of a(u>) is 

also required. 

For the complete data sequence {x(n)}, a simple method of estimating the complex 

spectrum a(u) is to use the computationally efficient FFT. The FFT of {x(n)} at frequency 

u) normalized by a factor N gives the FFT spectral estimate a(u) of a(w) (note that padding 

with zeros when performing the FFT may be necessary to obtain a smooth complex spectrum 

[1, 2, 3]). However, the FFT approach is known to suffer from sidelobe artifacts and poor 

accuracy. Many types of windows can be applied to the data sequence prior to performing 
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FFT to reduce the sidelobe effects at the cost of worsening the spectral resolution. 

When some segments of the data sequence {x(n)} are not available, we are led to the 

gapped data problem. Let 

x   =   [x{0)     •••    x(JV-l)]r 

=   l*i    x2 x?f (3.2) 

be the full data vector, where (-)T denotes the transpose and xx • • • xP are nonoverlapping 

subvectors of x with lengths Nx, ■■■, NP and £j=1iVp = N. A gapped data vector xs is 

defined similarly to x above except that xp for p - 2, 4, • • •, P - 1 (P is assumed to be an 

odd number) are missing. 

The FFT-based spectral analysis of gapped-data sequences by filling in the gaps with 

zeros may well yield an estimated spectrum with many artifacts, such as false peaks (which 

in RADAR applications would correspond to ghost targets). This phenomenon is illustrated 

in Figure 3.1 in which the simulated true spectrum (Figure 3.1(a)) consists of two spectral 

lines located at /i = UX/2-K = 0.12 Hz and f2 = U2/2-K = 0.14 Hz with amplitudes «i = 1 

and a2 = 0.2, respectively.  The total number of samples is N = 64 with the samples 19 

through 40 missing and hence set to zero in the FFT (in the previous notation this scenario 

corresponds to Ni = 18, N2 = 22, and N3 = 24). The available data samples are corrupted 

by an additive white Gaussian noise sequence with zero-mean and variance 0.01. A Taylor 

window with shape parameter 5 and -35 dB sidelobe level will be used throughout this paper 

for the windowed FFTs. Although usually we are interested in the complex spectrum, in the 

figures we only present the moduli of the complex spectral estimates for convenience. Figure 

3.1(b) shows the magnitude of the windowed FFT spectrum of the gapped data sequence 

{xg(n)} with a zero-padding length equal to 4AT. Owing to replacing the missing data with 

zeros, the spectrum in Figure 3.1(b) contains significant sidelobe artifacts, which are due to 

leakage from the dominant peak. The peak due to the second spectral line at f2 = 0.14 Hz 

is completely buried in the sidelobe effects of the dominant peak. For comparison, Figures 

3.1(c) and (d), respectively, show the moduli of the windowed FFT spectra of {x(n)} and 

{x3(n)}, the longer non-zero data segment in {xg(n)}. Both sequences are zero-padded to 4 
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times their original lengths. The two spectral lines are not resolved in the windowed FFT 

spectrum in Figure 3.1(d) due to the short length of {x3(n)}. Furthermore, even though 

the difference between the two frequencies /i and f2 is larger than the FFT resolution limit 

of 1/7V (i.e. |/i — /2I = 0.02 > 1/N « 0.016), they cannot be clearly resolved even when 

the complete data sequence is assumed to be available since windowing worsens the FFT 

resolution (see Figure 3.1(c)). 

Hence, as expected, the analysis of individual contiguous-data segments in a gapped 

sequence leads to poor spectral resolution. Also, data fusion via the direct FFT of the 

sequence with the gaps filled with zeros yields spectra with significant artifacts, such as 

ghost peaks, which are difficult to interpret. In what follows we show how to estimate 

a(uj) from {xg(n)} via an enhanced nonparametric adaptive filtering approach referred to as 

GAPES (an acronym that was explained in Section 1). 

3.3    Spectral Analysis of Gapped Data via GAPES 

We first present the GAPES algorithm for a data sequence with one gap. We then extend 

it in a straightforward manner to the case of multiple gaps of various lengths. 

3.3.1    Data Sequence with One Gap 

When only one gap exists in the measured data sequence, we have 

xs  =   [XT    x2    xf]   > (3-3) 

where the elements of X2 are considered to be unknown parameters in what follows.   Let 

h(u;) denote the impulse response of an M-tap FIR filter, 

h(w) = [/n(w)    Mw)     •••    hM{u))T, (3.4) 

and let 

xg{l) = [xg(l)    xg{l + l)    •••    xg(l + M-l)f,    i = 0,".,L-l, (3.5) 
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denote the forward overlapping vectors constructed from the sequence {xg(n)}, where L = 

N - M + 1 and xg(n) denotes the nth element of x9. Note that xs(Z) is a function of x2. We 

would like to choose h(u) such that the filter output, hHxg(l), resembles as much as possible 

the sinusoidal component of frequency u in the data sequence: 

hH{u)5tg{l) = a(u)ejwl + xes^l),    I = 0,..., L - 1, (3.6) 

where the residual term should be as small as possible (in a least-squares sense, see below). At 

the same time, we want to choose x2 similarly so that the {resu)(/)} are kept small for any u>. 

Finally, we determine the estimated complex spectrum a(u) from the same considerations. 

Mathematically, we propose to obtain the estimated spectrum as well as an estimate of the 

missing data by solving the following minimization problem: 

{x2,h>),cKu;)}   =       min     v'f |hÄ(W)xs(I)-a(W)^f, 

subject to   hH(u)a{Lü) = 1, (3.7) 

where £w denotes the summation over a set of frequency values in [0,2ir) (which will be 

specified later), and 

a(w) = [l    e*"     • • •    SM~1)U]T. (3.8) 

In the above equations we have used the notation h(cj) to emphasize the dependence of 

the filter coefficient vector on the frequency u>. Also, in these equations, (-)H denotes the 

conjugate transpose, and the constraint hH(u)a(u) = 1 is imposed to ensure that the FIR 

filter passes the frequency u) undistorted. 

The minimization in (3.7) is a complicated nonlinear (fourth-order) optimization problem. 

Below we present a cyclic approach that alternates between two basic steps of spectrum 

estimation and gap filling. Specifically, one step determines the adaptive filter and the 

complex spectrum by using the most recent estimate x2 of x2 in (3.7). As shown in the sequel 

this step entails an application of the APES algorithm to the interpolated data sequence 

x = [xf x£ x.J]T- The other step fills in the gap using the latest filter and spectrum estimate 

in (3.7) to determine x2. These two steps are presented in detail below. 
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j'wJ 

Spectral Estimation 

Assume that an estimate x2 of x2 is available. We obtain the interpolated data x by 

replacing x2 in (3.3) with x2. The estimated vectors x(Z), I = 0,1, • • •, L-1, are constructed 

from x in the same way as xg(l) are formed from xfl (see (3.5)). The criterion in (3.7) for 

filter and spectrum determination can then be expressed as 

{h(w),a(ü/)}   =      min    f:|hH(o;)x(Z)-a(a;)^ 

subject to   hH(a;)a(a;) = 1. (3.9) 

Let X(u) be the normalized Fourier transform of the vector sequence {x(Z)} 

M") = Tj:Hl)e-j»1. (3.10) 
L 1=0 

and let R denote the sample covariance matrix of {x(/)}, 

L 1=0 

Then it can readily be verified [7] that the minimization of the quadratic criterion in (3.9) 

with respect to h(w) and a(u) yields the filter 

h(w)  =        Q-'frM")      , (3.12) 

and the following estimated complex spectrum at frequency w: 

&{u>) = hH(u)X(u), (3.13) 

where 

Q(w) = R-X(w)XH(w). (3.14) 

The {a(u)} above is recognized as the APES spectrum estimate obtained from the inter- 

polated data sequence x [5, 6, 7]. It might be thought that the implementation of (3.13) 

requires the inversion of an M x M matrix for each u. However, this is not necessary. Indeed, 
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by the matrix inversion lemma: 

--l 

Q->) = R    + 
-i     R   X{u)X{u)HR 

-l 

l-X(w)HR   X(w) 

-l 
Hence we only need to compute R   , which is independent of u. By letting 

- -l 
ß{u) = a(w)HR a(w) 

7(w) = aH^R'xH 

p(w)   = X(a;)HR_1X(a;) 

we can simply write: 

&(u) 
7M 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 
/?(W)(l-p(a;)) + |7M|2 

and similarly for n(w). When applied to complete data sequences, APES achieves the best 

performance for a filter length of M = JV/2 [5, 6]. In what follows, we will choose M = 

iV/2 (unless specified otherwise) to calculate the APES-like spectrum estimate in (3.13) 

for the gapped-data case. We will evaluate (3.13) at the discrete Fourier transform (DFT) 

frequencies cok = 2vk/K, A; = 0,1, • • -if - 1 (with K > N). 

Gap Filling 

Once {n(wfc), &{oJk)}k=o were made available, we can determine x2 by solving the fol- 

lowing quadratic minimization problem (cf. (3.7)): 

K-1L-1 
i 

X2 

Let 

x2   =   min f) £ \hH K)xs(0 - aK)e*w*ff 
fc=0 1=0 

Hfc = 

hH(uk) 

hH(uk) 

hH(uk) 

(3.20) 

(3.21) 
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and 

Zfc = ä(wfc) 
P3^k 

pj{L-l)uJk 

Using this notation we can write the criterion in (3.20) as: 

|2 

Hfc x2  - Zfc E 
fc=0 

x3 

Partition H* as: 

and define 

Hfc = \A*  Th   CfcJ 
Ni      AT2      N3 

yjt = -AfcXi - CfcX3 + zjt. 

With this notation the criterion becomes, 

K-\ 

EHB^2-yfc| 
fe=0 

whose minimizer with respect to x2 is well-known to be 

x2 

K-\ 

E 
fc=0 

£B?Bfc -ijf-i 

E B^yfc. 
fc=0 

The interpolated data sequence x is obtained by replacing x2 in (3.3) with x2. 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

Initialization 

To start the algorithm we need an initial estimate of either x2 or the adaptive filter along 

with the complex spectrum. In our initialization approach we first obtain an initial adaptive 

FIR filter h(0)(u>) and an initial spectral estimate a(0)(w) by using the available data xx and 

x3- 
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Note that both the forward and backward data vectors are often used to achieve better 

spectral estimation performance [5, 6]. When both the forward and backward vectors are 

used for spectral estimation, h(u) in (3.12) and a(u) in (3.13) remain the same except that 

Q(w) in (3.14) is replaced by [7] 

Q(w)  = R-X(CJ)X
H

(U;), (3.28) 

where 

R   =   ^(R + R), (3.29) 

X(w)   =   ^[X(W)    X(w)], (3.30) 

X(w)   =   yE^)^' (3-31) 
L 1=0 

R   =   TEHI)X
H
(1), (3.32) 

and where x(/), I = 0,1, • • •, L — 1 are the backward overlapping vectors 

k(l) = [x'(N-l-l)   x*(N-l-2)    •••    x*{N-l-M)]T. (3.33) 

The filter length we use in the initialization step is the smallest integer larger than or 

equal to 0.75min(JVi, N3). The h(0)(o;) is calculated as in (3.12) in which Q(0)(a>) is obtained 

by using (3.28) with the following modifications: 

~ ,„x       1  / i (0)       i. (0)       i (0)        £ (o)\ 
R(°) = i ( RJ 

} +R; +R; 
; +R3 ' J, (3.34) 

and 

XW(W) = |[X?V)    X?V)    X<°>(w)    X<°>(W)], (3.35) 
- (0) £ (0) 

where Rf and Ri , i = 1,3, are the estimated forward and backward sample covariance 

matrices obtained from Xj, i = 1,3; and similarly X^ '(no) and ?Q (w), i = 1,3, are the 

normalized Fourier transforms of the forward and backward overlapping vectors. To compute 

those quantities we use their previously given definitions with L replaced by Li = N{ — M + 1. 
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The initial APES spectrum is given by 

aV>M = ±h<°>(W*) [XxM + X3(uk)e-^
N^], (3.36) 

for     Jfc = 0,l,---,Ä'-1. 

Summary of the Steps for One Gap 

Step 0. Initialization: start the algorithm using the initialization approach presented above. 

Step 1. Gap filling: update the gap estimate by using (3.27) based on the most recently 

determined adaptive filter and complex spectrum {h(uk),a(ujk)}. 

Step 2. Spectral estimation: determine the adaptive filter and the complex spectrum with 

(3.12) and (3.13), respectively, from the most recently interpolated data sequence {x(n)}. 

Step 3. Iteration: repeat Steps 1 and 2 until the relative change of the cost function 

53 £ |h*M*(0 - ö(«t)^i2 (3-37) 
fc=0 1=0 

between two consecutive iterations is equal to or less than a preset threshold value e or the 

number of iterations reaches a preset number /max- 

3.3.2    Data Sequence with Multiple Gaps 

The extension of the algorithm presented in the previous section to the multi-gap case 

is straightforward. The criterion (3.7) that lies at the basis of GAPES remains unchanged 

and so does the spectrum estimation step of GAPES. The gap filling step requires a slight 

modification of the partition in (3.24) to take into account the multi-gap structure of the 

data, and so does the initialization step. 

In fact it should be clear from the previous discussion that GAPES is applicable to cases 

in which the missing data has any pattern. The only step that may need a more significant 

modification in such cases is the initialization step. In the case of arbitrary missing-data 

patterns we can hardly use any special initialization. Hence we may have to use the simplest 

initialization of all possible initializations: set missing data to zero. If the ratio of the number 
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of available data samples to that of missing data is reasonably high the aforementioned simple 

initialization may be quite satisfactory. 

Finally, we remark on the fact that the GAPES algorithm can be readily extended to 

criteria of the more general form 

X>fc 5> |h"K)xp(Z) - c*K)e^|2 (3.38) 
fc=0 i=0 

where the weights {wk > 0; vk > 0} can be used to emphasize a frequency band in which 

we have a particular interest or a subsample of the data sequence that is thought of being 

more reliable. 

3.4    Numerical Results 

We present several numerical examples to illustrate the performance of GAPES for the 

complex spectral analysis of gapped data. We choose K = N and M = N/2 in the iteration 

steps of GAPES. Although the frequency grid for a(u) can be chosen in many ways, we use 

the DFT grid uk = 2irh/K, k = 0,1,- • -,K — 1. The noise added to the available data 

samples is white Gaussian with zero-mean and variance 0.01. In the initialization step of 

GAPES, the filter length is chosen to be the smallest integer larger than or equal to 3/4 of 

the length of the shortest available data segment. We use c = 10~2 to test the convergence 

of the GAPES algorithm and set the maximum number of iterations to Imax = 10. Once 

the iterative process is terminated, we obtain our final spectral estimate by evaluating the 

estimated spectrum of the last iteration on a grid that is four times finer than the Jf-point 

DFT grid. 

We compare our GAPES algorithm with the windowed FFT approach as well as the 

parametric CLEAN algorithm (see, e.g., [10, 11]) that has been proved to be quite useful 

in many applications including astronomical data analysis, microwave imaging, and target 

feature extraction. When using CLEAN, we model the data as a sum of complex sinusoids. 

CLEAN first estimates the parameters of the strongest sinusoid via FFT with zero-padding, 

subtracts it from the original data, and then repeats this process for the next strongest 
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sinusoid until the predetermined number of sinusoids is reached or the estimated amplitude 

of the latest sinusoid is small enough compared to the strongest one. Once the sinusoidal 

parameters are estimated, they are used to simulate the data in the gaps. The windowed 

FFT with zero-padding is then applied to the so-obtained interpolated data sequence to form 

the CLEAN spectrum. 

For the same example as the one in Figure 3.1, Figure 3.2(a) shows the modulus of the 

APES spectrum obtained from the complete data sequence {x(n)}. A comparison between 

Figures 3.2(a) and 3.1(c) shows that APES outperforms the windowed FFT approach. Fig- 

ures 3.2(b) and (c) show the moduli of the windowed FFT spectra obtained from the data 

interpolated by CLEAN and GAPES, respectively. Note that in Figure 3.2(b) the weaker 

spectral line at /2 = 0.14 Hz is not visible. Figure 3.2(c) is comparable to Figure 3.1(c) 

which indicates that the interpolated data obtained by GAPES are close to the true values 

of the unavailable data. Figures 3.2(d) shows the modulus of the APES spectrum of the data 

interpolated by GAPES, which is almost as good as that in Figure 3.2(a) obtained from the 

complete data sequence. 

Next consider a gapped data sequence with the same length and the same gap size and 

location as in the previous example but with a more complicated spectrum. Specifically, a 

mixed spectrum (shown in Figure 3.3(a)) is considered in this example, which comprises two 

discrete spectral lines located at /x = 0.05 Hz and f2 = 0.07 Hz with amplitudes ai = 1 and 

a2 = 0.5, respectively, and a continuous spectral component centered at fs = 0.18 Hz with 

a width of b = 0.04 Hz and a constant magnitude of a = 0.25. Figures 3.3(b) and (c) show 

the moduli of the windowed FFT spectra of the gapped and complete data sequences. The 

moduli of the windowed FFT spectra obtained from the CLEAN and GAPES interpolated 

data sequences are presented in Figures 3.3(d) and (e). Figure 3.3(f) shows the magnitude 

of the APES spectrum of the GAPES interpolated data sequence. Comparisons between the 

various parts of Figure 3.3 lead to similar conclusions to those drawn from the results shown 

in Figures 3.1 and 3.2. 

Finally, we present an example that concerns the spectral analysis of an incomplete data 

sequence with two gaps.  The total length of the simulated sequence is N = 128, and the 
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samples 23 through 46 and 76 through 100 are missing. Hence nearly 40% of the data samples 

are missing. Figure 3.4(a) shows the true spectrum which consists of four discrete spectral 

lines at /i = 0.05 Hz, /2 = 0.065 Hz, /3 = 0.26 Hz, and fA = 0.28 Hz with amplitudes 

ai = a2 = a3 = 1 and a4 = 0.5, and a continuous spectral component at /s = 0.18 Hz with 

a width b = 0.015 Hz and a constant magnitude of a = 0.25. Figures 3.4(b) and (c) show the 

moduli of the windowed FFT spectra of the gapped and complete data sequences. Figures 

3.4(d) and (e) display the moduli of the windowed FFT spectra of the interpolated data 

sequences obtained via CLEAN and GAPES, respectively. Figure 3.4(f) shows the modulus 

of the APES spectrum of the interpolated data sequence obtained via GAPES. Note that 

in this case CLEAN cannot remove all false peaks owing to the serious leakage problem of 

FFT, which makes CLEAN pick peaks at wrong locations. Once again, GAPES appears to 

provide the most accurate interpolated data sequence and spectral estimate. 

3.5    Conclusions 

We have presented an algorithm for nonparametric complex spectral analysis of incom- 

plete data with gaps of various lengths via an adaptive FIR filtering approach, referred to 

as the Gapped-data Amplitude and Phase Estimation (GAPES) algorithm. The GAPES 

algorithm iterates the following two steps:  (1) estimating the adaptive filter and the cor- 

responding complex spectrum via APES, and (2) filling in the gaps by using the APES 

least-squares fitting criterion.  We initialized the GAPES algorithm by applying APES to 

the available data segments. Numerical examples have been used to demonstrate the effec- 

tiveness of the proposed GAPES algorithm and compare it with the windowed FFT approach 

and the parametric CLEAN algorithm. The results have shown that GAPES yields more 

accurate interpolated sequences and spectral estimates than the other approaches considered 

in this chapter. 
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Figure 3.1: Moduli of the complex spectral estimates (solid lines in (b)-(d)) compared with 

the true spectrum (dotted lines in (b)-(d)); (a) true spectrum, (b) windowed FFT spectrum 

of the gapped data sequence, (c) windowed FFT spectrum of the complete data sequence, 

(d) windowed FFT spectrum of the longer contiguous-data segment. 
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Figure 3.2: Moduli of the complex spectral estimates for the same example as in Figure 

3.1. (a) APES spectrum of the complete data sequence, (b) windowed FFT spectrum of 

the interpolated data sequence obtained via CLEAN, (c) windowed FFT spectrum of the 

interpolated data sequence obtained via GAPES, (d) APES spectrum of the interpolated 

data sequence obtained by GAPES. 
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Figure 3.3: Moduli of the complex spectral estimates (solid lines in (b)-(f)) compared with the 

true spectrum (dotted lines in (b)-(f)); (a) true spectrum, (b) windowed FFT spectrum of the 

gapped data, (c) windowed FFT spectrum of the complete data, (d) windowed FFT spectrum 

of the interpolated data sequence obtained via CLEAN, (e) windowed FFT spectrum of the 

interpolated data sequence obtained via GAPES, and (f) APES spectrum of the interpolated 

data sequence obtained via GAPES. 45 
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4.    Spectral Estimation of Gapped Data and SAR 

Imaging 

with Angle Diversity 

4.1    Introduction 

Estimating the spectrum of a time series is crucial in applications such as radar, commu- 

nications, underwater acoustics, and astronomical data analysis. Conventional fast Fourier 

transform (FFT) based approaches have been widely used due to their high computational 

efficiency. However, the major drawback of the FFT-based approaches is the inherent low 

resolution. A large number of methods have been proposed to obtain enhanced spectral 

estimates with higher resolution. Of these, the parametric (e.g. [1, 2, 3, 4]), non-parametric 

(e.g. [5, 6, 7, 8]), and semi-parametric [9] approaches have been considered for target feature 

extraction and radar imaging. In general, nonparametric approaches are less sensitive to 

data modeling errors and more robust than their parametric counterparts. Many nonpara- 

metric spectral estimators make use of adaptive (data-dependent) finite impulse response 

(FIR) filterbanks. The APES (Amplitude and Phase Estimation) spectral estimator [7, 10] 

belongs to this class of approaches. 

The gapped-data (or missing-data) problem arises when continuous measurements are 

not possible, or the measurements during certain periods are not valid due to for instance 

interference or jamming impinging on the receiver and hence they must be discarded. In 

radar signal processing (see, e.g., [11, 12]), the problem of combining several sets of mea- 

surements made at different azimuth angle locations can be posed as a problem of spectral 

estimation from gapped data. Similar problems arise in data fusion via ultrawide-band co- 

herent processing [13]. Furthermore, in astronomy, data are often available as groups of 

samples with rather long intervals during which no measurements can be taken (see, e.g., 

[14, 15, 16, 17, 18, 19] and the references therein). In astronomy, special attention has been 

paid to detecting the presence of one or more periodic signals from incomplete measurements 

using techniques such as the periodogram approach [15] and the CLEAN deconvolution [16]. 
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In this paper, we consider using the APES filter for the spectral estimation of gapped data 

and synthetic aperture radar (SAR) imaging with angle diversity. Unlike the FFT and the 

windowed and/or averaged FFT spectra, the APES spectrum has good resolution properties, 

suffers from little or no leakage effects, and has good statistical stability [7, 20]. The excellent 

performance of APES in the class of nonparametric spectral analysis methods was one of 

the reasons why we chose to extend this particular approach to the gapped-data case. We 

present in the paper a relaxation based algorithm, referred to as the GAPES (Gapped-data 

APES) algorithm, which consists of two steps: (1) estimating the adaptive filter and the 

corresponding spectrum via APES, and (2) filling in the gaps via a least squares (LS) fit. 

For the SAR imaging with angle diversity data fusion, we perform the one-dimensional (1-D) 

windowed FFTs (WFFTs) in range, use the GAPES algorithm to interpolate the gaps in 

the aperture for each range, apply the 1-D inverse FFTs (IFFTs) and de-window in range, 

and apply the two-dimensional (2-D) APES algorithm to the interpolated matrix to obtain 

the final 2-D SAR image. 

The remainder of this paper is organized as follows. In Section 2, we formulate the 

problem of interest. The APES algorithm for the spectral analysis of the complete data is 

introduced in Section 3. The GAPES algorithm for the spectral analysis of the 1-D gapped 

data is presented in Section 4. Section 5 presents a method to use GAPES for 2-D SAR 

imaging with angle diversity data fusion. In Section 6, numerical examples are presented 

to illustrate the performance of the proposed algorithm. Finally, Section 7 contains our 

conclusions. 

4.2    Problem Formulation 

We consider herein the spectral estimation algorithm for 1-D data sequences with multiple 

gaps of various sizes, and for 2-D data matrices with gaps consisting of missing columns. 

Let {x(n)}n=o denote a complete 1-D discrete-time sequence of length N. The spectral 

analysis of {x(n)} essentially amounts to decomposing x(ri), at each frequency u> G [0, 27r) 
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of interest as 

x(n)   =   a{u)ejwn + ew(n),    n = 0, • • • ,iV - 1, (4.1) 

where a(u) denotes the complex amplitude of a sinusoid with frequency to, and ew(n) denotes 

unmodeled noise and interference at UJ (in other words, ew(n) is everything left in x(n) after 

the sinusoidal component a(u)e]"n has been subtracted). Note that the decomposition in 

(4.1) is frequency dependent and it should not be confused with assuming that x(ri) consists 

of one sinusoid in noise. In fact Equation (4.1) does not imply any modeling assumptions at 

all, which means that the methods based on (4.1) are nonparametric. 

Let {x(n, n)}, n = 0,1, • • •, N - 1, n — 0,1, • • •, N - 1, denote a 2-D discrete-time data 

matrix. For a frequency pair {o>,<D} of interest, {x(n,n)} is modeled as 

x(n,n)   =   a(w,ö)e,"(wn-HDfl)+cw^(n,fi), 

n = 0,---,iV-l,    n = 0,---,JV-l;    w,ö <E [0,2TT), (4.2) 

where a(u, ü) denotes the complex amplitude of a sinusoid, and eup(n, n) denotes unmodeled 

noise and interference at frequency (u),ü). 

Assume that some segments of the data sequence {x(n)}n=o are unavailable for reasons 

explained above. Let 

x   =   [rr(0)     •••    x{N-l)]T 

=   [xl   xj    -    x£]T (4.3) 

be the complete data vector, where xi, • • • xp are subvectors of x, whose lengths are 

Ni,---,NP, respectively, with £p=i-Np = N. Here (-)r denotes the transpose. A gapped- 

data vector xg is formed when xp for p = 2, 4, • • •, P - 1 (P is always an odd number) 

are unavailable and considered as being unknown. Let xa and xu denote the two vectors of 

dimension Ni+ N3-\ (- NP and N2 H h NP-i, whose elements are the available and 

unavailable data samples in x, respectively. Hence xa is given whereas xu is unknown. 

For the angle diversity data fusion problem encountered in SAR imaging, the data mea- 

sured by the radar are recorded intermittently. Assuming that the radar measurements in 
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range are complete, the gapped data due to the angle diversity can be expressed as: 

unknown,       n = 0,1, • • •, iV — 1;     n € G, 
xg(n,n) = < (4.4) 

x(n,n), otherwise, 

where Q denotes the set of azimuth look indices n at which no measurements are taken. 

Figure 4.1 shows a schematic map of a spotlight SAR with angle diversity. For two 

adjacent continuous segments and the gap between them, we will use the two continuous 

segments to interpolate the gap between them. The motivation for this is that in many cases 

the measurements can be non-stationary. 

The FFT processing for the gapped data can yield a spectrum with significant artifacts, 

as demonstrated and explained in, e.g., [21]. The approach taken in this paper is to fill in 

the gaps corresponding to the missing data and use the so-obtained interpolated data for 

spectral estimation via APES. 

4.3    APES for Complete Data 

We review the basic facts about APES for complete data [7, 10] that are essential to 

understanding the GAPES algorithm for gapped data presented in the next section. For 

clarity of presentation, we discuss only the so-called forward-only version of APES (for both 

1-D and 2-D cases). It can be shown [7] that a slightly modified approach, leading to the 

forward-backward APES, gives significantly better estimation accuracy. For this reason, the 

forward-backward APES will be used in the numerical examples in Section 6. 

Estimation of a(u) in (4.1) by the method of least squares (LS) leads to the Fourier 

transform (FT) method: 

iV  n=0 

or its counterpart for power spectra, the periodogram. As is well-known, the FT approach 

suffers from leakage, poor resolution and erratic statistical behavior and it is rarely used 

without some corrections [22, 23, 24]. Smoothing is one of the most common corrections 

applied to the FT. One form of smoothing (or averaging) of the FT that will help us make 
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the connection with APES is as follows. Partition the data sequence in (4.1) into M x 1 

overlapping vectors with the following shifted structure: 

x(0 = [z(Z)    ...    x(i + M-l)],    l = 0,...,L-l, (4.6) 

where L = N — M + 1 and M is a user parameter referred to as the filter length. Then 

calculate the FT of each of the data snapshots in (4.6) and average the so-obtained local 

FTs: 

-i   L-\   I    M-l 

«AFT    =     }EiE^ + ™)c-MM 
L
 1=0 M  m=0 

lL~l 

£ 
^ 1=0 

-jwl 
1   M-l 
- £ a(i + m)e-> 
iw  m=0 

(4.7) 

To interpret (4.7) in a filterbank framework, define 

a(w) = [l    e*"    ...    eJ"w(M-1)]T. (4.8) 

Observe from (4.1) and (4.6) that we have 

x(0 = a(w)a(w)e*" + ew{l),    I = 0,..., L - 1, (4.9) 

where ew(i) is formed from {ew(n)} in the same way as x(i) is formed from {x(n)} in (4.6). 

Let 

h(w) = ~a(w). (4.10) 

The inner sum in (4.7) is equal to hH(w)x(l), where (-)H denotes the conjugate transpose, 

and hence: 

ÄAFTM = 7 £ [h*(a;)x(0] c"^, (4.11) 
-^ 1=0 

where (cf. (4.9)) 

hH(w)x(0 = a(cj)eJu,,+res,    I = 0,...,L-1. (4.12) 

The averaged FT (AFT) spectral estimator in (4.7) can thus be interpreted as consisting 

of two steps:   (1) use the (frequency-dependent) finite-impulse-response (FIR) filter h(w) 
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to prefilter the data sequence (cf.  (4.12)), and (2) obtain an estimated spectrum from the 

so-obtained filtered sequence by the method of LS, which obviously leads to (4.11). 

The filterbank interpretation of AFT is useful since it allows us to understand the de- 

ficiencies of this approach by simply studying its associated filterbank {h(u;)}. As h(u) is 

data-independent (or non-adaptive) it is no surprise that «AFTM suffers from leakage and 

poor resolution problems. A well-designed data-dependent filterbank should be able to re- 

duce such problems significantly. Indeed, such a filter should be able to achieve a much larger 

signal-to-interference-and-noise ratio (SINR) in the filtered data (4.12) than the SINR in the 

original sequence in (4.1). If this increase in SINR is significant enough to counterbalance 

the reduction in the number of data samples from N for (4.1) to L for (4.12), then the result 

will be a spectral estimate a(u) with enhanced accuracy. This is precisely the idea behind 

APES, as explained next. 

In the APES approach the filterbank {h(u;)} is designed such that: (a) the filtered 

sequence is as close to a sinusoidal signal as possible (in a LS sense), and (b) the complex 

spectrum a(u) of x(n) is not distorted by filtering. Mathematically, we obtain h(w) along 

with the estimate of a(u) by minimizing the following LS criterion: 

min   fMh"(w)x(Z)-a(u;)e^f ,    subject to hH(u)a(u) = 1, (4.13) 
a(w),h(u) l=Q I I 

where the constraint hH(u;)a(a;) = 1 is imposed to ensure that h(w) passes a sinusoid with 

frequency u undistorted (see requirement (b) above). The solution to the above quadratic 

minimization problem in (4.13) is readily obtained as [10] 

aH(w)Q-1(o;)a(a;) 

and 

&(w) = hH{u)X{u), (4.15) 

where X(a>) is the following normalized FT: 

X(w) = yi;x(0e-^, (4.16) 
L 1=0 
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and 

Q(w) = R - X(u)XH(u) (4.17) 

with R being the following sample covariance matrix: 

R=TI>(0X
H
(0- (4.18) 

L 1=0 

To avoid the inversion of an M x M matrix for each a>, we use the matrix inversion lemma 

(see, e.g., [22]) to obtain: 

Q>)=i%iii«i! (4.19) 

l-X*(w)R   X(w) 

- -1/2 ^ -1 
Let R       denote the Cholesky factor of R   , and let 

z. -1/2 
ä(w) = R     a(w) (4.20) 

- -1/2 _ 
X(w) = R      X(w) (4.21) 

ß(u) = äiH(u)a(u)) (4.22) 

7(w) = a.H{uj)X(u) (4.23) 

p(w) = XH(u;)X(w). (4.24) 

Then we can rewrite (4.14) and (4.15) as: 

pR"1/2]fff(l-PM)ä(w) + 7(w)X(w)] 
h<w> = /3H(i-/K«)) + l7MP  (4'25) 

and 

&(w>" ««)&-S + ITMI" <4'26) 

whose implementation requires only the Cholesky factorization of the matrix R that is 

independent of u>. 

When applied to full data sequences, APES achieves the best performance for a large 

range of filter lengths M.   It can be shown that increasing the filter length increases the 
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resolution at the cost of reducing the statistical stability [7].   Note that M = N/2 is the 

maximum possible value of M as beyond it R becomes singular. 

The 2-D spectrum estimation by means of an adaptive filterbank approach is briefly 

explained as follows. Let H(w,tD) denote anMxM 2-D impulse response, where M and M 

are the adaptive filter lengths in range and cross-range, respectively, and let 

h(w,ü) = vec[H(w,ü>)] (4.27) 

where vec[-] denotes the operation consisting of stacking the columns of a matrix on top 

of each other. Furthermore, let X denote the 2-D data matrix whose (n, n)th element is 

x(n, n), and Z, i denote the M x M submatrix of X consisting of the elements {x(n, n),n = 

l,...,l + M-l, n = F,... ,l + M - 1} for I = 0,1,. ..,L - 1 and f = 0,1,...,L-1 where 

L = N-M + landL = N-M + l. Define 

Zijr=vec[Z/>r], (4.28) 

and 

Z(W,fi>) = i E E z^-^"^. (4.29) 
LL i=o i=o 

Let 

ä(u>, O) = ä(ö>) ® a(w), (4.30) 

where ® denotes the Kronecker matrix product, a(w) is defined in (4.8), and 

ä(ü) = [l    e>°    ...    eJ'(Jt?-1)ö]T. (4.31) 

Then the 2-D adaptive FIR filter and the APES spectral estimate can be obtained as [7]: 

= Q-Hy,Q)&Kfi>) > (4>32) 

äH(w, w)Q_1 (o;, w)ä(w, u) 

and 

d(w,w) = hH(w,cj)Z(ü;,cD), (4.33) 

where 

Q(UJ,ü)=TI-Z(UJ,ü)ZH{Lü,ü), (4.34) 
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with R being the MM x MM sample covariance matrix associated with {zjf}. A simple 

expression for h(u,ü) can also be obtained similar to (4.25) by making use of the matrix 

inversion lemma (cf. (4.19)). 

Since the 2-D APES algorithm requires the inversion of (MM x MM) matrix (see, (4.32) 

and (4.34)), it is computationally prohibitive to apply the algorithm directly to data matrices 

with large dimensions. Instead we use the chip-based (approximative) implementation of the 

2-D APES algorithm proposed in [25], as shown in Figure 4.2. We apply the 2-D FFT to X 

to obtain an FFT image and then break it into small overlapping FFT image chips of size 

Ns x Ns with Ns < N and Ns < N (in the numerical example, we choose the overlapping to 

be 50% and set NS = NS = 16 while N = N = 256). We perform the 2-D IFFT on the small 

chips to obtain the phase history data chips to which we apply the 2-D APES algorithm. 

When applying the 2-D APES algorithm to each phase history data chip, we choose the 

filter lengths M = Ns/2 and M = iVs/2 and evaluate the spectrum at a frequency grid that 

is 4 times finer than the discrete FT (DFT) grid in both range and cross-range. When the 

image chips are 50% overlapped, we calculate the APES image chips &(u>, ü) only over the 

frequency range 2n\ < u, Co < 2TT§ from the each phase history data chip. The final 2-D 

APES SAR image consists of those APES image chips. Due to overlapping between adjacent 

image chips, this procedure avoids the mosaicking or tiling effect, which is noticeable for the 

images shown in [26]. 

4.4    GAPES for 1-D Gapped Data 

In this section, we present the algorithm for the spectral analysis of 1-D gapped data via 

GAPES. The presentation follows [27]. The application of the GAPES approach to the 2-D 

SAR imaging with angle diversity data fusion will be given in the next section. We start by 

describing the algorithm for the spectral estimation of incomplete data with one gap, and 

then extend it to the data sequence with gaps of various sizes. 
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4.4.1    A Data Sequence with One Gap 

In the case that there is only one gap in the measured data sequence, we can write 

[xT    x£    x?f. (4.35) xg 

In this case, we have xa = [xf x^]T, xu = x2, and N = N1 + N2 + N3. The interpolated data 

vector will be denoted by x in which an estimate xu of xu is obtained and used to replace 

xu. 

We obtain initial APES estimates of h.(u) and a(u) from the available data xa in the 

following way. We choose an initial filter length M0 such that an initial full-rank covariance 

matrix R can be built with the filter length M0 and using xa only. 

Let Lk = Nk - M0 +1, k = 1,3. We apply APES to xa with the following re-definitions: 

-i /Li-l N!+N2+L3-l \ 

*H = -T-T7-    E *(l)e-j"1 +       E       *V)e~J"1 (4-36) 
hi -t- L3  y ,=0 l=N!+N2 ) 

and . v 
-l /Li-l Nl+^2+L3-l \ 

äH = r4r-   £x(0x*(0+     Y,    m*H(i)\ (4-37) 
Li\ + L3  \ |=o l=N!+N2 } 

The APES spectral estimate a(o;) as defined via (4.15) is a continuous function of a> and 

hence, in principle, we could evaluate it at any frequency value. For the initial estimates 

we will evaluate d(w) and h(w) at the DFT grid: uk = 2-nk/K for k = 0,..., K - 1 with 

K = N. (We can also choose K > N, such as K = 47V, for somewhat better results at a 

cost of more computations). The final spectral estimate can, if desired, be evaluated on a 

finer grid. 

Next we consider the estimation of xu based on the initial spectral estimates a(u) and 

h(o;) obtained as outlined above. Under the fairly natural assumption that the missing data 

have the same spectral content as the available data we can determine xu from the condition 

that the output of the filter h(a;fc) fed with the data sequence made from xa and xu is as 

close as possible (in the LS sense) to ä(ujk)e
ju,kl, for I = 0,..., L - 1 and k = 0,..., K - 1. 
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Mathematically, we propose to obtain xu as the solution to the following LS problem: 

K-1L-1 
a 

Xu 
min £ £ |hHK)xg(0 - &(uk)e^1 (4.38) 

fc=0 1=0 

where xg(l) is the overlapping vector constructed from xg in the same way as x(Z) is formed 

from x in (4.6).   Besides the intuitive appeal of estimating xu in this way, an additional 

bonus is that we remain in the APES framework (compare the criteria in (4.13) and (4.38)), 

an observation to which we will return for further comments later on in this section. 

Let the L x N matrix H^ be defined by 

Hfc = 

hHK) 

hHM 

^[Ak 

LxJVi       LxN2      LxN3 

(4.39) 

and 

zfc = d(wfc)[l    e>'Wfc     ...    e*1-1^]    eCLxl. 

Let Dfc = [Ajt Ck], and define 

y* = zjb - Djtxa. 

Using this notation, we can write the criterion in (4.38) as: 

K-\ 
min ]T) ||Bfcxu - yfc| 

(4.40) 

(4.41) 

(4.42) 
fc=0 

x„ = 
.fc=0 

(4.43) 

whose minimizer with respect to xu is readily obtained to be 

£ Bf y*. 
fc=0 

Finally, the interpolated data sequence x is obtained by replacing xu with xu in (4.35). 

Once an estimate xu has become available, the next logical step should consist of re- 

estimating the spectrum by applying APES to the interpolated data sequence x made 

from xa and xu.  According to the discussion around (4.13), this entails the minimization 
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with respect to h(uk) and a(uk) of the function: 

£ £ \hH(ukW) - a(uk)e^
lf (4.44) 

Jt=o J=O 

subject to hH(^)a(cjfc) = 1, where x(Z) is made from x.   Evidently the minimization of 

(4.44) with respect to {h(uk),a(Lük)}^~Q decouples in K minimization problems of the form 

of (4.13), yet we prefer to write the criterion function as in (4.44) to make the connection 

with (4.38).   In effect, comparing (4.38) and (4.44) it becomes clear that the alternating 

estimation of {a(wfc)} (along with {h(t^)}) and xu outlined above is nothing but a cyclic 

algorithm for solving the following minimization problem: 

, P*     u E E |kHK)*g(0 - «Me^f (4-45) 
xu,{a(">fc),Mwit)} fc=0 j_0 ' 

subject to hH(wfc)a(o;jt) = 1. As is well-known a cyclic minimizer decreases the criterion 

at each iteration. Furthermore, this decrease must be strict in the present case, as the 

estimates of {a(uk),h.(cok)} and xu that we compute at each iteration are uniquely defined 

(under very weak conditions). Combining these facts with the simple observation that the 

criterion in (4.45) is nonnegative and hence bounded from below, leads to the conclusion 

that the cyclic minimizer under discussion will always converge to a minimum point of the 

criterion. Whether that minimum point is a local or global one, this is a harder question the 

answer of which will in general depend on the initial estimate used. 

The formulation in Equation (4.45) has a strong intuitive appeal as it leads to: 

(a) an analysis filterbank {h.(uk)} for which the filtered sequence is as close as possible (in 

the LS sense) to the sinusoidal component in x(n) with frequency uk G [0,27r), 

(b) an estimated complex spectrum that should be almost leakage-free (in view of (a)) and 

have good statistical properties (inherited from the LS method used to obtain it), and 

simultaneously, 

(c) an estimate of xu whose spectral content mimics the spectral content of the available 

data as much as possible (once again, in the LS sense). 

If we estimated xu in a way that were different from (4.38) then the above cyclic mini- 

mization interpretation would be lost (this interpretation is the bonus of estimating xu in the 
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APES framework, which was mentioned following (4.38)). The same thing would happen if 

we estimated the spectrum of the interpolated sequence by a method that is different from 

APES. 

The GAPES algorithm implements the cyclic minimization of (4.45) outlined above. 

A step-by-step summary of this algorithm follows. 

Step 0: Initialization: start the algorithm using the initialization approach mentioned at 

the beginning of this section. 

Step 1: Gap filling: update the gap estimate in {x{ri)} with xu obtained by using (4.43) 

based on the most recently determined adaptive FIR filter and APES spectrum {h(uk),a(uk)}. 

Step 2: Spectrum estimation: determine the adaptive FIR filter and APES spectrum with 

(4.25) and (4.26), respectively, from the most recently interpolated data sequence {x(n)}. 

Step 3: Iteration: repeat Steps 1 and 2 till the relative change of the cost function in (4.45) 

is equal to or less than a preset threshold value e or the number of iterations reaches a preset 

number Imax. 

4.4.2    Spectral Estimation of 1-D Data Sequences with Multiple Gaps 

The extension of the algorithm presented in the previous section to the multi-gap case 

is straightforward. One approach could be to let the gap parameter vector xu contain all 

gaps, accordingly modify (4.42) and all related equations, and then obtain an estimate of 

missing data simultaneously. However, in many applications, the measured data can be 

non-stationary but locally stationary. Therefore, we intend to perform the gap filling for 

each individual gap separately. Each gap is filled in by making use of only the two adjacent 

continuous segments. 

4.5    SAR Imaging for Angle Diversity Data via GAPES 

The 1-D GAPES algorithm can be readily applied to SAR imaging with angle diversity 

data fusion, where the 2-D phase history data matrix Xg whose (n,n)th element is xg{n,n) 

has missing columns. The principal steps are summarized as follows. 
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Step I: Perform 1-D WFFT for each available column of the phase history data matrix Xg 

to obtain Yx. 

Step II: Fill in the gaps for each row of Yi via GAPES to obtain Y2. 

Step III: If a 2-D WFFT SAR image is desired, then compute 1-D WFFTs for each row of 

Y2 and stop. Otherwise, go to the next step. 

Step IV: Apply 1-D IFFT and de-windowing to each column of Y2 to obtain the gap-filled 

phase history data matrix X. 

Step V: Obtain the 2-D SAR image by applying the chip-based 2-D APES outlined above 

to the data matrix X. 

4.6    Numerical Results 

We now present some numerical examples to illustrate the performance of the GAPES 

algorithm for spectral analysis of gapped data and SAR imaging with angle diversity data 

fusion. We choose K = N fox the iteration steps and the spectrum is estimated at discrete 

frequencies uk = 2irk/K, or fk = u)k/2ir,k = 0, • • •, K - 1. The simulated signals in the 

examples are corrupted by additive zero-mean white Gaussian noise with variance 0.01. In 

the initialization step for each gap, the filter length is chosen as the smallest integer larger 

or equal to 3/4 of the length of the shorter adjacent continuous segment. We set e = 10~2 

to detect the convergence of the algorithm and the maximum number of iteration is set to 

7max = 10. After the estimation procedure terminates, we obtain a finer spectral estimate 

with APES by using K = AN for the 1-D spectral estimation example. 

We compare our algorithm with the WFFT and with the parametric CLEAN algorithm 

(see e.g. [16]). 1-D and 2-D Taylor windows with order 5 and sidelobe level -35 dB are used 

for 1-D and 2-D WFFTs, respectively. When using CLEAN, we model each scatterer of the 

target of interest as a complex sinusoid with constant amplitude and phase. CLEAN first 

estimates the parameters of the strongest scatterer, subtracts it from the original signal, and 

then repeats this process for the next strongest scatterer until the predetermined number 

of scatterers is reached or the estimated amplitude of the current scatterer is small enough 

compared to the strongest one. Once the scatterer parameters are estimated, they are used 
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to simulated the data in the gaps. The WFFT approach is then used to form the CLEAN 

spectrum. 

We also consider the Autoregressive (AR) Model based Extrapolation approach, referred 

to as ARME. Each available data segment (except for the last one) is used with the Yule- 

Walker method [22, 23, 24], which guarantees stability for forward linear prediction to fill in 

one half of the gap to the right. Each available data segment (except for the first one) is also 

used with the Yule-Walker method for backward linear prediction to fill in one half the gap 

to the left. We choose the AR model order to be one half of the length of the available data 

segment when it is used to fill in one half of the gap to the right or to the left of the data 

segment. The WFFT approach is then used to form the ARME spectrum after all the gaps 

are filled. We remark that although the Yule-Walker method avoids the instability problem 

for data extrapolation, the extrapolated data sequences exponentially delay to zero, which 

can cause artifacts (see the examples below). 

Figure 4.3 presents an example of spectral analysis of incomplete data with two gaps of 

different sizes. The total length of the data sequence is N = 128 and samples 23 through 46 

and 76 through 100 are missing (note that almost 40 percent of the data is missing). Figure 

4.3(a) shows the true spectrum which consists of four spectral lines located at /i = 0.05, 

/2 = 0.065, /i = 0.26, and /2 = 0.28 with complex amplitudes «i = a2 = «3 = 1 and 

a4 = 0.5, respectively, and a continuous spectral component centered at fs — 0.18 with a 

width b = 0.015 and a constant modulus a = 0.25. In Figure 4.3(b) the WFFT is applied 

to the data by filling in the gaps with zeros (note the artifacts in the spectrum due to the 

missing data). Figures 4.4(c) and (d) show the moduli of the WFFT and APES spectra of 

the complete data sequence (note the superior resolution of APES as compared to WFFT). 

Figures 4.3(e) and (f) demonstrate the moduli of the WFFT spectra of the interpolated 

data sequences via CLEAN and ARME, and Figures 4.3(g) and (h) present the moduli of 

the WFFT and the APES spectra of the data sequence interpolated via GAPES. Note that 

in this case, CLEAN and ARME cannot be used to effectively eliminate the spectral artifacts 

due to the amount of data missing whereas GAPES is shown to be effective for filling in the 

gaps and estimating the spectrum.  In Figure 4.3(i), we show the true data and the data 
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interpolated via GAPES (only the real part is shown; the behavior of the imaginary part is 

similar). The results displayed so far are for one randomly picked realization of the data. 

In Figure 4.3(j), we show the GAPES spectrum for five different randomly selected data 

realizations. 

We now illustrate the performance of SAR imaging with angle diversity data fusion via 

GAPES with the high resolution phase history data of a Slicy object at 0° azimuth angle 

generated by XPATCH [28], a high frequency electromagnetic scattering prediction code for 

complex 3-D objects. A photo of the Slicy object taken at 45° azimuth angle is shown in 

Figure 4.4(a). The original XPATCH data matrix has a resolution of 0.043 meters in both 

range and cross-range and a size of N — N = 256. Figures 4.4(b) and (c) show the 2-D 

WFFT and 2-D chip-based APES SAR images from the complete XPATCH data matrix, 

respectively. 

To demonstrate the advantage of the angle diversity data fusion via GAPES, we artifi- 

cially create gaps as follows. We consider the first and the last 8 columns of the XPATCH 

data matrix as missing and let the remaining 240 columns contain 7 uniformly spaced gaps 

each with 16 columns.   Each continuous data segment contains 16 columns as well.   The 

overall missing data percentage is 50%. Figure 4.5(a) exhibits the WFFT image by filling in 

the gaps with zeros. Note that in cross-range, the point-like scatterers are split into multiple 

separate point scatterers due to the missing data so that distinct ghosts appear.  Figures 

4.5(b) and (c) show the SAR images obtained by using 2-D WFFT on the CLEAN and 

ARME interpolated data, respectively. Shown in Figure 4.5(d) is the SAR image obtained 

by using 2-D WFFT on the GAPES interpolated data while the final GAPES image ob- 

tained by using the 2-D chip-based APES on the GAPES interpolated data is presented in 

Figure 4.5(e). Note that the spectral lines due to the dihedrals are distorted by CLEAN due 

to the inherent modeling of them as point scatterers.   The ARME approach cannot over- 

come the missing data-induced ghost problem associated with the point-like scatterer due 

to the linear prediction model not matching the sinusoidal signal for the point-like scatterer. 

From Figures 4.4 and 4.5, we observe that the SAR images obtained by using the GAPES 

interpolated data are almost the same as those obtained by using the complete data. 
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4.7    Conclusions 

We have investigated the application of the APES (Amplitude and Phase Estimation) 

filter to spectral analysis of 1-D gapped data sequences and for 2-D SAR imaging with angle 

diversity data fusion. The proposed GAPES (Gapped-data APES) algorithm iterates the 

following two steps: (1) estimating the adaptive filter and the corresponding spectrum via 

APES, and (2) filling in the gaps via a least squares (LS) fitting. For the SAR imaging 

with angle diversity data fusion, we performed the 1-D WFFTs in range, used the GAPES 

algorithm to interpolate the gaps in the aperture for each range, applied the 1-D IFFTs and 

de-windowed in range, and applied the 2-D APES algorithm to the interpolated matrix to 

obtain the final 2-D SAR image. Numerical examples have been presented to demonstrate 

the effectiveness of the algorithm and compare it with the windowed FFT approach, the 

parametric CLEAN method, and the ARME (AR Model based Extrapolation) approach. 

The GAPES algorithm has been shown to provide the best spectral estimates and SAR 

images. 
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Figure 4.1: Schematic map of a spotlight SAR data acquisition with angle diversity. 

2-D 11 * T 

2-D APES 
algorithm 

0.5K<öJ<1.5ä 

0.5it<öJ<1.5K 

i ' 

2D time 
domain 
data 
matrix 

2-D 
FFT 

• k      2-D freq. 
domain 
data 
matrix 

1          1 
*. 

2-DD TT. 
1 

2-DD7FT 

Figure 4.2: Breaking a large data matrix into small chips and applying 2-D APES to each 

small chip to obtain the 2-D spectral estimation of a data matrix with large dimensions. 
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Figure 4.3: Moduli of complex spectral estimates (solid lines in (b)-(h) compared with the 

true spectrum (dotted lines in (b)-(h)); (a) true spectrum, (b) WFFT spectrum of the 

gapped data (filling in the gaps with zeros), (c) WFFT spectrum of the complete data, (d) 

APES spectrum of the complete data, (e) WFFT spectrum of the interpolated data sequence 

via CLEAN, (f) WFFT spectrum of the interpolated data sequence via ARME, (g) WFFT 

spectrum of the interpolated data sequence via GAPES, and (h) APES spectrum of the 

interpolated data sequence via GAPES, (i) True data and data interpolated via GAPES, 

and (j) GAPES spectrum for five different realizations. 
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Figure 4.4: (a) Target photo taken at 45° azimuth angle, and (b) 2-D WFFT (c) and 2-D 

APES SAR images obtained by using the complete XPATCH data of size 256x256. 
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Figure 4.5: Comparison of SAR images, (a) WFFT image of gapped data matrix, (b) WFFT 

image with angle diversity data fusion via CLEAN, (c) WFFT image with angle diversity- 

data fusion via ARME, (d) WFFT image with angle diversity data fusion via GAPES, and 

(e) APES image with angle diversity data fusion via GAPES. 
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5.    A Quasi-parametric Algorithm for SAR Target 

Feature Extraction and Imaging with Angle Diversity 

5.1    Introduction 

Target feature extraction from spotlight mode synthetic aperture radar (SAR) measure- 

ments plays an important role in many applications including battlefield awareness [1] and 

automatic target recognition (ATR) [2, 3]. Fast Fourier transform (FFT) based approaches 

have been widely used due to their high computational efficiency and robust performance. 

However, the disadvantages of such approaches are their low resolution, poor accuracy, and 

high sidelobes. A variety of spectral estimation methods have been proposed to obtain target 

features with high resolution and low sidelobes. Of these, the parametric (e.g. [4, 5, 6, 7]), 

non-parametric (e.g. [8, 9, 10, 11]), and semi-parametric [12] approaches have been con- 

sidered for SAR image formation and target feature extraction. In general, parametric 

approaches may outperform their nonparametric counterparts in resolution and accuracy 

but are more sensitive to data modeling errors. 

Azimuth angle diversity data fusion, which combines several sets of radar measurements 

made at different azimuth angle locations with advanced signal processing methodology, 

provides a useful tool for SAR target feature extraction and imaging with improved resolution 

and can be used to achieve better ATR performance. From the viewpoint of signal processing, 

the solution to the angle diversity data fusion problem shares a similar principle to the missing 

or gapped data problem, which occurs, for example, in astronomy. Valuable astronomical 

data are often available only in the form of groups of samples which are gapped within 

rather long intervals when no reliable measurements can be taken (see, e.g. {13, 14, 15, 16], 

and the references therein). Special attentions have been paid to detecting the presence of 

one or more periodic signals from incomplete measurements using techniques such as the 

periodogram approach [14], the CLEAN deconvolution [15], and/or reconstruction of the 

unevenly sampled data on a regular grid by making certain assumptions on the data. 

Most parametric SAR target feature extraction methodologies make the assumption that 
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the man-made target of interest consists of several trihedral corner reflectors (point-like 

scatterers) and derive the corresponding algorithms based on the two-dimensional (2-D) 

complex sinusoidal data model in which the amplitude and phase are constant in both range 

and cross-range. However, this data model does not always fit the actual radar observations. 

Many man-made targets can contain dominant scattering mechanisms other than trihedral- 

like scatterers. For instance, radar responses from many man-made targets such as vehicles 

and buildings are primarily caused by both trihedral and dihedral corner reflectors [17]. A 

principal difference between a trihedral and a dihedral corner reflector lies in their radar 

responses in cross-range. That is, the former can be modeled as a complex sinusoid with a 

constant amplitude and phase, while the latter can be approximately described as a complex 

sinusoid with its amplitude being a sine function (defined as sinc(x)=sin(a;)/x) and its phase 

a constant.   A mixed data model was presented in [7], which characterizes the reflections 

in cross-range from a trihedral and a dihedral corner reflector with a constant and a sine 

function, respectively. In [12], this data model is extended by modeling each target scatterer 

as a 2-D complex sinusoid with arbitrary amplitude and constant phase in cross-range and 

with constant amplitude and phase in range, and a Semi-PARametric (SPAR) algorithm 

was proposed for SAR target feature extraction and high resolution image formation. Due 

to its flexible data model, SPAR combines the advantages of both parametric and non- 

parametric spectral estimation methods, and thus has batter estimation performance and 

higher resolution capability than nonparametric algorithms and is more robust against data 

modeling errors over parametric ones. 

To achieve excellent ATR performance, the radar range resolution capability is becoming 

an increasingly important factor to be considered in the radar system design. For example, 

ultra wideband (UWB) radar has been an effective technology due to its extremely large 

bandwidth (several GHz) and very high range resolution (on the order of several centimeters). 

As the range resolution increases, the radar cross-sections of target scatterers vary within 

the large bandwidth [18], and the assumption of constant responses can no longer hold. 

This makes the signal processing needed by such ultra high range resolution radars more 

difficult. More flexible data model is required to achieve robust performance of target feature 
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extraction. 

In this paper, we study the SAR target feature extraction and imaging with angle diversity 

using an UWB radar. Instead of having a radar collecting data continuously over a large angle 

to achieve high resolution in cross-range, which is a huge commitment of radar resources, we 

attempt to achieve high resolution in cross-range by collecting data continuously over a small 

angle but at several diverse azimuth angle locations. More specifically, with angle diversity, 

the radar collects data continuously, stops, collects more data continuously, stops again, and 

so forth. Hence the data available with angle diversity consist of several pieces of the data 

collected continuously over a large angle. Instead of using the mixed data model in [7] or the 

semi-parametric data model in [12], we use a more flexible data model, which describes each 

target scatterer as a 2-D complex sequence with arbitrary amplitude and constant phase 

in both range and cross-range. This data model is essentially quasi-parametric because of 

the arbitrary amplitude assumption in both dimensions. The feature extraction algorithm 

based on such a flexible data model is more robust against the data modeling errors than 

the parametric and semi-parametric methods. A new algorithm, referred to as the QUALE 

(QUasi-parametric ALgorithm for target feature Extraction) algorithm, is presented for the 

SAR target feature extraction with angle diversity.  QUALE first chips each scatterer out 

from the image of the target of interest and apply 2-D inverse FFT (IFFT) to obtain the 

phase history data. Secondly QUALE estimates the model parameters involved in the flexible 

data model, which includes, for each scatterer of the target of interest, locations in range 

and cross-range, a constant phase, and a 2-D arbitrary real-valued amplitude sequence. 

Thirdly QUALE performs an average in the range dimension over the estimated 2-D real- 

valued amplitude sequence, models the so-obtained 1-D sequence with a simple sine function, 

and estimates the relevant sine parameters by minimizing a nonlinear least squares (NLS) 

function. Finally, the 2-D SAR image is reconstructed by using the estimated features. Like 

the semi-parametric data model in [12], there are also ambiguity problems associated with 

our data model. To alleviate this problem, QUALE uses an isolation process to chip out the 

most dominant scatterer with a 2-D window in the image domain, so that it only deals with 

one scatterer at a time. 
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The remainder of this paper is organized as follows. Section 2 establishes the data model 

and formulates the problem of interest. The QUALE algorithm is presented in Section 3. In 

Section 4, numerical examples are presented to illustrate the performance of the proposed 

algorithm. Finally, Section 5 contains our conclusions. 

5.2    Data Model 

To obtain high resolution SAR target features and to reconstruct the SAR images of 

targets of interest, we need to build a proper data model for the target scatterers. It has 

been investigated in [12] that the assumption of arbitrary amplitude and constant phase 

in cross-range is in general more applicable than the mixed data model to characterize the 

scattering mechanisms including both trihedral and dihedral corner reflectors. Since for an 

UWB radar collecting data continuously over a large angle, the RCS of a target scatterer 

is not constant within the radar bandwidth, we model the received signal reflected from a 

target scatterer as: 

3{n,n) = z(n,n)e>+e>2*U»+f*),    n = 0,1, • • • ,N - 1,    n = 0,1,- • • ,N - 1, (5.1) 

where N and N denote the dimensions of data samples in range and cross-range, respectively; 

z(n, n) is an arbitrary unknown 2-D real-valued function of n and n determined by the RCS 

of the scatterer as a function of frequency and angle with respect to the radar and the 

particular scattering mechanism of the scatterer; $ is a constant phase; finally, {/, /} is the 

frequency pair proportional to the locations in range and cross-range of the scatterer. This 

data model is essentially quasi-parametric since little parameterization is assumed in either 

range or cross-range. 

Assume that a target of interest consists of K scatterers. Then the target data model in 

the presence of noise and clutter has the form: 

K 

y(n,n)   =   £zfc(n,n)ei*V2,r(/fcn+/fcn) + e{n,n), 
k=\ 
n = 0,l,---,Ar-l,    n = 0,l,••-,#-!, (5.2) 
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where Zk(n,n) denotes an arbitrary 2-D real-valued amplitude function of n and n for the 

kth. scatterer; <pk and {fk, fk}, respectively, are the constant phase and the frequency pair 

of the kth scatterer; finally, e(n, n) denotes the unknown 2-D noise and clutter sequence. 

Note that, if the amplitude function Zk(n,n) is assumed to be constant in range, we get the 

same data model as the one presented in [12]. 

For angle diversity data fusion, the data measurements are recorded intermittently. For 

this case, the data model can be expressed as: 

y(n,n) = < 
0, n = 0,l,..-,JV-l,    fiCEG, 

(5.3) 
y(n,n),       otherwise, 

where G consists of the indices where the data measurements are not made. Note that, (5.3) 

is equivalent to setting 

. f 0, n = 0,l,---,iV-l,    neG, 
zk{n,n) = i (5.4) 

Sfc(n, n),       otherwise, 

and letting 

K 
y{n,n)   =   £ zk(n, ^e^e'2^^^ + e(n,n), 

k=l 

n = 0,l,---,iV-l,    n = 0,l,---,JV-l, (5.5) 

where e(n, n) is formed from e(n, n) in the same way as zk(n, n) is formed from Zk{n, n). To 

reduce the amount of computations and avoid model ambiguity, we chip out each scatterer 

one at a time (see the next section for more details). Our objective is to estimate the model 

parameters from each scatterer chip. 

Once the amplitude estimate of each scatterer is obtained, we attempt to obtain approx- 

imate target features by averaging it over n. We remark that we can readily modify our 

approach to model the amplitude estimate to vary with n as nQ [18]. We choose to average 

it over n to simplify the problem. 

We then approximately model the /cth real-valued amplitude average as a sine function 

of n, i.e., as afcsinc[7r&fc(n - rk)], where ak, bk, and rk denote the unknown real-valued am- 

plitude, the spectral width, and the signal's peak location of the kth scatterer, respectively. 
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These three parameters have quite clear physical interpretations. That is, o^ is proportional 

to the RCS, bk is related to the length of the scatterer in cross-range, and r^ gives the peak 

location of the data sequence and is determined by the orientation of the scatterer. We 

estimate the approximate scatterer parameters {ak, bk, rk} from the amplitude average and 

reconstruct an approximate 2-D SAR image using the estimated parameters. 

5.3    The QUALE Algorithm 

The QUALE algorithm consists of three main steps. First, each scatterer is chipped out 

in the image domain by using an isolation method, which will be described in Section 5.3.1, 

then 2-D IFFT is applied to the image chip to get the corresponding phase history data of 

each scatterer. Secondly, the model parameters of each scatterer are estimated according to 

the 2-D quasi-parametric model in (5.5) (see Section 5.3.2 for details), then the sine function 

parameters are estimated by minimizing a NLS cost function (see Section 5.3.2 for details). 

Finally, the phase history data of each scatterer are simulated according to the estimated 

scatterer parameters and 2-D FFT is applied to the simulated data to obtain the enhanced 

image chips, and then these enhanced image chips are put back to the locations of the original 

image chips to reconstruct the 2-D approximate SAR image (see Section 3.3 for details). 

5.3.1    Scatterer Isolation 

Because of the flexibility of the data model we use, there will be ambiguity problems when 

two or more scatterers are located in the same range or cross range. To avoid this problem, 

we chip each scatterer out and work only on one of them at a time. Before we present the 

isolation method, we need to consider another problem: when working with the gapped data 

with angle diversity, the peak of a single scatterer will be split into several peaks, which 

makes it difficult to single out each scatterer. This phenomenon is illustrated in Figures 

5.1(a) and (b). Figure 5.1(a) is the zero-padded FFT of an all-one sequence, and Figure 

5.1(b) is the zero-padded FFT of the gapped data due to angle diversity. More specifically, 

the length of the all-one sequence is 32, the gapped data due to angle diversity is formed by 
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setting the middle 50% to zero. The two sequences are both zero-padded to 128. It is clear 

that one peak is split into many peaks. We avoid this peak splitting problem by isolating the 

scatterers based on the image generated from a continuous data segment that has the most 

power. Let X denote the original data matrix and X denote the continuous data segment 

with the most power, with both of which N x N matrices (X can be obtained by setting 

other data segments to zero). Let V denote the 2-D FFT of X without zero-padding, and 

V denote the 2-D FFT of X with zero-padding to L x L, where zero-padding is necessary to 

improve the accuracy. We determine the size and position of the isolation window of each 

scatterer on V and chip out the scatterer from V. 

There is a linear relationship on the size and position between the windows in V and V. 

If {1,1} is a location in V, then the corresponding location {n, n} in V can be obtained with 

n = 
N 

and 
TV 

n = T(l-D + 1 

(5.6) 

(5.7) 

where [-\ denotes the nearest integer towards minus infinity. Next we describe how to 

determine the windows needed to chip out each scatterer. In [12], a windowing method is 

proposed to chip out the most dominant scatterer one at a time. In this paper, we use a more 

robust version to meet the requirement of the gapped data due to angle diversity. Unlike 

SPAR, which uses the same threshold value for both range and cross-range, we use different 

threshold values for range and cross-range. 

To chip out the most dominant scatterer, we first determine the peak location (/+,J+) 

from the magnitude of V. We then fix I to l+ and search around l+ by starting from l+ to 

determine the interval h < I < l2 so that the magnitude of V is above a certain threshold 

Tr. Similarly, we can fix I to l+ and search around l+ by starting from l+ to determine the 

interval li <l <l2 so that the magnitude of V is above another certain threshold T^. The 

corresponding window position {ni,nz,fii,n2} on V can be determined according to (5.6) 

and (5.7). The corresponding phase history data of the scatterer. can be obtained by chipping 

out the image chip determined by {ni, n2,fii,n2} from V and applying 2-D IFFT. Note that 
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when two scatterers are closely spaced in range, they may fall into the same window, which 

can result in biased target feature estimates. To minimize the problem while determining 

the interval h <l < h, we also check the ratio R between the height of the second peak and 

that of the strongest peak within the window around (l+, l+). If it is larger than a threshold 

Tratio, they will be split into two separate windows with the valley point between the two 

peaks as the window boundary. 

The steps of chipping out all of the scatterers can be summarized as follows: 

Step 0: Compute the 2-D FFT V and V of X and X, respectively. 

Step k: Determine the window Wk for the strongest scatterer on V, compute the corre- 

sponding window Wk on V. Set those elements of V covered by Wk to zero. Obtain the 

corresponding phase history data matrix for the scatterer by applying 2-D IFFT to the image 

chip obtained by applying Wk to V. 

Stop: Stop when we have K scatterers, which can be predetermined or according to how 

strong the new scatterer is as compared to the strongest scatterer. 

5.3.2    Scatterer Parameter Estimation 

We first present the estimation of the parameters of each scatterer according to the 2-D 

quasi-parametric model, then the sine function parameters are estimated by minimizing a 

NLS cost function. 

2-D Quasi-Parametric Parameter Estimation 

Due to the scatterer isolation process described in Section 3.1, the phase history data 

matrix corresponding to the fcth scatterer in the presence of noise has the form: 

yk{n,n)   =   xk(n,n)ej'l'kei2^fkn+hfl) + ek{n,n), 

n = 0,l,---,Nk-l,    n = 0,l,---,Nk~l, (5.8) 

where Nk and Nk are the dimensions of the fcth scatterer data matrix in range and cross- 

range, respectively; xk(n, n) denotes an arbitrary 2-D real-valued amplitude function of n and 
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n for the scatterer; <f>k and {fk, fk}, respectively, are the constant phase and the frequency 

pair of the scatterer; finally, ek(n, n) denotes the unknown 2-D noise and clutter sequence. 

Let Yfc, Xfc, and Efc be Nk x Nk matrices with their (n, n)th elements being yk(n, n), xk(n, n) 

and, ek(n,n), respectively. Let B(fk,fk) denote the following Nk x Nk matrix: 

V(fk,h) = u>Nk(fk)u>lk(fk), (5.9) 

where (-)T denotes the transpose, 

»*>(fk) = [l   <P*h    ■■■    e^-^f, (5.10) 

and 

w^(/*)=[l   <P*h    •••    c^^-DA]21. (5.11) 

Then (5.8) can be rewritten in a matrix form as 

Yk = e**D(/t> Ä) © Xfe + Efc> (5.12) 

where © denotes the Hadamard matrix product, i.e., the element-wise matrix product. The 
ys A y» 1_ — 

NLS estimates {Xfc, 4>k,fk,fk} of {Xfc, (f>k,fk,fk}, can be obtained by minimizing the follow- 

ing cost function 

CiCXfc, &,/*,£)   =   [Yfc-e^D(/fc,/fe)©Xfc|
2

F 

=   E EhK")-^!".^^^^!'      (5-13) 
n=0   n=o 

where || • ||F denotes the Frobenius norm.  After some straightforward derivations, we can 

rewrite (5.13) as 

C2(Xfc,^,/fc,/fc)   =    £   S {b.C^^r+^^^-Re^Cn^)^^^2^^^)]] } 
n=0    n=0    *• ' 

~E   E {Re2[y*(n,n)^2,r/fcn+2,r/kfl+w]}, (5.14) 
n=0    n=0 
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where Re(-) denotes the real part and (•)* denotes the complex conjugate. The estimate of 

each element of X* is given by 

n = 0,l,---,7Vfc-l,    n = 0,1, •••,#*-!. (5.15) 

Inserting (5.15) into (5.14), we obtain the NLS estimates {<j>k, fk, fk} of {<j)k, fk, fk} by 

equivalently maximizing the following cost function: 

Nk-l Nk-l 

n=0    n=0 
-,  Nk-lNk-l 

n=0   n=0 

The estimate of <f)k is given by 

1 fjv-iJ9fc-i 
k= jangle    £   £ [v2(n,n)e-^<2'^2^ 

Z [ n=0   n=o 
(5.17) 

fk=fk,fk=Jk 

Inserting (5.17) into (5.16) and dropping out a term that is not related to the frequency 

estimation, we finally obtain the estimate {/fc, fk} of {/*, fk} by the following maximization: 

{fk, fk} = arg max 
fk,fk 

Nk-1 Nk-1 

E   E yl(n,n)e-W>^ 
n=0   n=0 

(5.18) 

which can be done by simply applying 2-D FFT to yl{n, n) with 2fk and 2fk as the frequency 

variables. 

Note that xk(n,n) usually does not contain obvious gaps due to chipping or windowing 

in the image domain. After the estimate xk(n,n) of xk(n,n) is obtained, the segments 

of xk(n,n) corresponding to the gaps of zk(n,n) should be set to zero. Let Gk contain the 

indices corresponding to where the gaps ofxk(n, n) should be. Then the relationship between 

the indices in Gk and G is linear and can be computed with: 

~Nk, Gk(i) = 
N 

G(i) (5.19) 
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or 

aw   Nh 
N°U (5.20) 

where [•] and |_-J denote the nearest integers towards positive infinity and minus infinity, 

respectively, and Gk(i) and G(i) denote the ith indices of Gk and G, respectively. We 

compute the begining of the gaps with (5.19) and the end of the gaps with (5.20). 

The steps of the parameter estimation for a single scatterer can be summarized as follows: 

Step 1: Estimate the frequency pair {/fc, jk} with (5.18) by using 2-D FFT with zero- 

padding to obtain an initial estimate, which is then refined by using the FMINS function of 

MATLAB. 

Step 2: Calculate <j>k according to (5.17) with {fk, fk} replaced by {fk, fk} obtained in Step 

1. 

Step 3: Determine xk(n, n), n = 0,1, • • •, Nk - 1, n = 0,1, • • •, Nk - 1, according to (5.15) 

with {<pk, /fc, /fc} replaced by {<£*, fk, fk} obtained in the previous two steps. 

Step 4:   Compute the cross-range indices to form Gk and set those columns of xk(n,n) 

corresponding to the indices in Gk to zero. 

Sine Function Based Real-Valued Amplitude Estimation 

When the estimate of the 2-D real-valued amplitude sequence xk(n,n) for the kth. scat- 

terer is obtained, we average it over the range dimension to obtain 

VkW^TT^lakin,*),    n = 0,l,---,iVfc-l,    n<£Gk. (5.21) 
"k   n=0 

We then approximately model the so-obtained 1-D real-valued sequence with a sine function. 

The parameter estimation of the sine function is given next. 

Let 

yk(fi)'=akgk{n) + ek{n),    n = 0,1, • • • ,Nk - 1,    n <£ Gk. (5.22) 

where #fc(n) is defined as 

gk(n) = sine [bkn(fi - rk)]. (5.23) 
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Let yk and gfc denote the vectors whose nth elements are yk{n) and gk(n), n # Gk, 

respectively. Then the NLS estimates of {ak, bk, rk} can be determined by minimizing the 

following cost function 

Cy(ak,bk,Tk) = \\yk-(ykgk\\2. (5.24) 

Minimizing C7 in (5.24) with respect to ak gives the estimate &k of ak: 

A        g^fc 
ak = 

ii&ir 
(5.25) 

bk=h,Tk=Tk 

Inserting (5.25) into (5.24), C7 in (5.24) can be simplified to 

,2 

Cs(h,rk) = \\ykf-^^, (5.26) 
llgfcll 

which can be minimized by maximizing its last term 

C*(bk,rk) = ^-. (5.27) 
llgfcll 

The maximization of (5.27) requires a 2-D search over the parameter space.   We use an 

alternating maximization procedure by iteratively updating bk and rk while fixing the other 

parameter. 

The initial estimate fk of rk is obtained by finding the peak position of ||yfc||. When we 

search for bk with the FMIN function of MATLAB, we also need to obtain the initial estimate 

bk of bk. We calculate the 1-D FFT ykf of the data sequence y* and search two frequency 

positions fi and fr nearest to 0, where /, < 0 and fT > 0, such that |yjt/(/i)| < \ |y*/(0)l 

and yfc/(/r)| < \ |y*/(0)|. The initial estimate bk of bk is given by 

h = fr - /,. (5-28) 

The algorithm for the NLS estimation of the parameters of the sine function model in 

(5.22) is described as follows. 

Step (1): Obtain the initial estimates tk of rk by using the above mentioned initialization. 

Step (2): Update bk. Replace rk in (5.27) by fk obtained in the previous step and search 

for bk which maximizes Cg. 
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Step (3): Update fk. Replace bk in (5.27) with bk obtained in Step (2) and search for fk 

which maximizes C9. 

Step (4):   Repeat Steps 2 and 3 until "practical convergence" which is determined by 

checking the relative change e of the cost function C9 in (5.27) between two consecutive 

iterations. We use e = 10~3 in our numerical examples. 

Step (5): Calculate ak using (5.25). 

5.3.3    Image Reconstruction 

After the estimates {ak, bk, Tk)      of the sine function parameters are obtained, we simu- 

late {{yfc(n)}n=i}^=1 by using [ak, h,rk}k=1 according to (5.22), andrepeat{{yfc(n)}£1}fc=i 

in range to obtain the 2-D real-valued amplitude {X^}^, that is 

5(n,n)fc = &(n),    n = 0,1, • • -,Nk - 1,    n = 0,1,- • -,Nk - 1,    k = l,2,---,K.    (5.29) 

With {Xfc}f=1 and {<£fc, fk, fk}k=u the phase history data matrix of each scatterer is 

simualted without gaps. Then we perform the 2-D FFT on the simulated phase history data 

matrix to obtain the enhanced image chip for each scatterer. Each enhanced image chip is 

put back to its original location in the FFT image V defined in Section 5.3.1 to reconstructed 

the approximate SAR image of the target. If the image chips of different scatterers overlap, 

we use whichever is stronger for the overlapping part. 

5.4    Numerical Results 

We illustrate the SAR target feature extraction and imaging performance of QUALE with 

a set of high resolution phase history data generated by XPATCH [19], a high frequency 

electromagnetic scattering prediction code for complex 3-D objects. A photo of the slicy 

object taken at 45° azimuth angle and the corresponding FFT SAR image from the XPATCH 

data obtained at 0° are, respectively, shown in Figures 5.2(a) and (b) where a good agreement 

between the slicy object and the image can be seen clearly. The XPATCH data matrix we 

use has a resolution of 0.038 meters in both range and cross-range and a size of N = N = 
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288. To demonstrate the advantages of the angle diversity data fusion, we assume that we 

have three segments of the XPATCH phase history data available to us with each segment 

consisting of continuous data columns from the beginning, middle, and end of the original 

data matrix. Hence the data are collected at three diverse azimuth angle locations. 

Now we compare QUALE with the FFT approaches as well as CLEAN, which has been 

proved to be very useful in several applications including astronomical data analysis, mi- 

crowave imaging, spectral estimation, and target feature extraction. When using CLEAN, 

we model each scatterer of the target of interest as a complex sinusoid with constant ampli- 

tude and phase in both range and cross-range. CLEAN first estimates the parameters of the 

strongest scatterer, subtracts it from the original signal, and then repeats this process for 

the next strongest scatterer until the predetermined number of scatterers is reached or the 

estimated amplitude of the current scatterer is small enough. Once the scatterer parameters 

are estimated, they are used to simulate the data in the missing gaps. FFT is then used to 

form the CLEAN images. Since CLEAN uses a point-like scatterer model, a larger number 

of scatterers have to be assumed to model a dihedral corner reflector. We set a total number 

of scatterers to be 30 for CLEAN. 

The thresholds TR and TCR used in the isolation process of QUALE is 2% and 5% of 

the peak value in range and cross-range, respectively. We implement the scatterer isolation 

process of QUALE based on the 2-D FFT of the middle segment of the gapped data with 

zero-padding. In a cross-range, if the second peak is greater than 40% of the largest one in 

one window, they will be split into two windows. We assume that the number of scatterers 

is K = 7 for QUALE. 

We first consider a case where the gapped data set due to angle diversity contains 50% of 

the original XPATCH data set. The original data matrix in columns 49 through 120 and 169 

through 240 are set to zero to form the gapped data set. Hence the angle diversity data we 

use in this example has three non-zero data segments (each with 48 columns) intermitted by 

two gaps (each with 72 columns). Figure 5.3(a) shows the windows used by QUALE to chip 

out the 7 scatterers. Figures 3(b) and (c) show the FFT SAR images obtained by using the 

middle segment only and all of the segments, respectively.  Compared with Figure 5.2(b), 
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Figures 3(b) and (c) exhibit distinct energy leakage in cross-range from the mainlobes of the 

scatterers, with peak splitting occurring in Figure 5.3(c) due to the gapped data. Figures 

3(d) shows the SAR image obtained by using CLEAN. The SAR image obtained via QUALE 

is presented in Figure 5.3(e). Note that, CLEAN generates images with isolated points. The 

line-shaped features in cross-range caused by dihedral-like scatterers (see Figure 5.2) are 

represented with several point scatterers. For the trihedral type of corner reflectors, CLEAN 

works very well since the data model is quite accurate.  From Figure 5.3(d) we note that 

QUALE can generate better images than the FFT approaches and CLEAN for dihedral type 

of corner reflectors.   For this example, our simulations show that the ratios between the 

MATLAB flops needed by CLEAN and QUALE over those needed by the FFT approaches 

are, 178.73 and 11.59, respectively. CLEAN requires much more computations than QUALE 

because the former performs 2-D FFT on the entire data matrix while QUALE works with 

the scatterer image chips with much smaller dimensions. Also, the NLS approach used to 

estimate the sine function parameters in QUALE causes little additional burden to the total 

amount of computations since the approach convergences quickly within a few iterations. 

Consider next an example with much larger gaps.  We set the original XPATCH data 

matrix in columns 11 through 139 and 150 through 278 to zero to form the angle data 

diversity data set.  Three data segments each with 10 columns are separated by two gaps 

each with 129 columns.   That is, the total angle diversity data set contains only 10% of 

the original data set. The cross-range resolution of each segment is 288 x 0.038/10 « 1.094 

meters. The windows used by QUALE to chip out the 7 scatterers is shown in Figure 5.4(a). 

The SAR images obtained by using the FFT approaches, CLEAN, and QUALE are shown 

in Figures 5.4(b) through (e), which correspond to the images in Figures 5.3(b) through (e), 

respectively.  A comparison between Figures 5.3 and 5.4 shows that the FFT SAR images 

become worse due to the larger data gaps with more mainlobe energy leaked in cross-range 

and more severe peak splitting. While both FFT approaches and CLEAN need the same 

amounts of computations as in the previous example, QUALE requires approximately 40% 

more computations than in the previous example due to larger image chips. Hence QUALE 

is still computationally much more efficient than CLEAN. 
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5.5    Conclusions 

We have presented a quasi-parametric estimation algorithm, referred to as QUALE, for 

approximate SAR target feature extraction and imaging with angle diversity based on a 

flexible data model, which describes each target scatterer as a 2-D complex sequence with 

arbitrary amplitude and constant phase in range and cross-range.  This data model is es- 

sentially quasi-parametric because of the arbitrary amplitude assumption.   QUALE first 

estimates the model parameters that include, for each scatterer, a 2-D arbitrary real-valued 

amplitude sequence, a constant phase, and the locations in range and cross-range. It then 

averages the estimated 2-D real-valued amplitude sequence over the range dimension, ap- 

proximately models the so-obtained 1-D sequence with a sine function, and estimates the 

sine function parameters by minimizing a NLS cost function. Finally, the 2-D SAR image 

is reconstructed by using the estimated features. We have shown with XPATCH simulated 

examples that QUALE outperforms the FFT approaches and the well-known CLEAN algo- 

rithm for a target containing both dihedrals and trihedrals even in the presence of very large 

data gaps. QUALE is also computationally much more efficient than CLEAN. 
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(a) 

(b) 

Figure 5.1: 1-D FFTs of continuous data and gapped data due to angle diversity. The 

continuous data used is an all-one sequence with length 32, and the gapped data due to 

angle diversity is formed by setting the middle 50% of the continuous data to zero, (a) FFT 

of continuous data, (b) FFT of gapped data due to angle diversity. 
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(a) 

(b) 

Figure 5.2: (a) Target photo taken at 45° azimuth angle, (b) 2-D FFT SAR image obtained 

at 0° azimuth angle using the entire XPATCH data with a resolution 0.038 meters in both 

range and cross-range. 
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(a) 
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(b) (c) 

(d) (e) 

Figure 5.3: Comparison of SAR images obtained via different algorithms for the XPATCH 

data with two gaps in cross-range (only 50% of the data are used with cross-range resolution 

of each segment being 288 x 0.038/48 « 0.228 meters), (a) The windows used by QUALE to 

chip out the 7 scatterers, (b) 2-D FFT SAR image from the middle segment of the gapped 

XPATCH data with zero-padding, (c) 2-D FFT SAR image from the entire gapped XPATCH 

data, (d) CLEAN SAR image, and (d) QUALE SAR image. 
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(b) (c) 

(d) (e) 

Figure 5.4: Comparison of SAR images obtained via different algorithms for the XPATCH 

data with two gaps in cross-range (only 10% of the data are used with cross-range resolution 

of each segment being 288 x 0.038/10 « 1.094 meters), (a) The windows used by QUALE to 

chip out the 7 scatterers, (b) 2-D FFT SAR image from the middle segment of the gapped 

XPATCH data with zero-padding, (c) 2-D FFT SAR image from the entire gapped XPATCH 

data, (d) CLEAN SAR image, and (d) QUALE SAR image. 
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